# Demazure Crystals and Schubert Polynomials 

 Thesis PresentationYuxuan Sun<br>Haverford College<br>\section*{Spring 2023}

## Motivation

Schubert polynomials

## Motivation



## Motivation



## Motivation



Schubert varieties
$\left\{\chi_{w}: w \in S_{n}\right\}$

## Motivation



Schubert varieties $\left\{\chi_{w}: w \in S_{n}\right\}$ special family
complete flag variety
$G L(n) / B_{n}$

## Motivation



Schubert class
$\sigma_{w} \in H^{*}\left(G L(n) / B_{n}\right) \overleftarrow{\text { each defines }}$

Schubert varieties
$\left\{\chi_{w}: w \in S_{n}\right\}$
$\downarrow$ special family
complete flag variety
$G L(n) / B_{n}$

## Motivation



## Motivation

Schubert polynomials are indexed by a permutation:

$$
\mathfrak{S}_{w}, \quad w \in S_{n}
$$

## Motivation

Schubert polynomials are indexed by a permutation:

$$
\mathfrak{S}_{w}, \quad w \in S_{n}
$$

$$
\begin{aligned}
\mathfrak{S}_{[2,1,5,4,3]}= & x_{1}^{3} x_{2}+x_{1}^{2} x_{2}^{2}+x_{1}^{3} x_{3}+2 x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1}^{2} x_{3}^{2}+x_{1} x_{2} x_{3}^{2} \\
& +x_{1}^{3} x_{4}+x_{1}^{2} x_{2} x_{4}+x_{1} x_{2}^{2} x_{4}+x_{1}^{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{4}+x_{1} x_{3}^{2} x_{4}
\end{aligned}
$$

## Motivation

Schubert polynomials are indexed by a permutation:

$$
\mathfrak{S}_{w}, \quad w \in S_{n}
$$

$$
\begin{aligned}
\mathfrak{S}_{[2,1,5,4,3]}= & x_{1}^{3} x_{2}+x_{1}^{2} x_{2}^{2}+x_{1}^{3} x_{3}+2 x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1}^{2} x_{3}^{2}+x_{1} x_{2} x_{3}^{2} \\
& +x_{1}^{3} x_{4}+x_{1}^{2} x_{2} x_{4}+x_{1} x_{2}^{2} x_{4}+x_{1}^{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{4}+x_{1} x_{3}^{2} x_{4}
\end{aligned}
$$

initial definition: recursive

## Motivation

Schubert polynomials are indexed by a permutation:

$$
\mathfrak{S}_{w}, \quad w \in S_{n}
$$

$$
\begin{aligned}
\mathfrak{S}_{[2,1,5,4,3]}= & x_{1}^{3} x_{2}+x_{1}^{2} x_{2}^{2}+x_{1}^{3} x_{3}+2 x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1}^{2} x_{3}^{2}+x_{1} x_{2} x_{3}^{2} \\
& +x_{1}^{3} x_{4}+x_{1}^{2} x_{2} x_{4}+x_{1} x_{2}^{2} x_{4}+x_{1}^{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{4}+x_{1} x_{3}^{2} x_{4}
\end{aligned}
$$

initial definition: recursive
Open problem!

## Motivation

Schubert polynomials are indexed by a permutation:

$$
\mathfrak{S}_{w}, \quad w \in S_{n}
$$

$$
\begin{aligned}
\mathfrak{S}_{[2,1,5,4,3]}= & x_{1}^{3} x_{2}+x_{1}^{2} x_{2}^{2}+x_{1}^{3} x_{3}+2 x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1}^{2} x_{3}^{2}+x_{1} x_{2} x_{3}^{2} \\
& +x_{1}^{3} x_{4}+x_{1}^{2} x_{2} x_{4}+x_{1} x_{2}^{2} x_{4}+x_{1}^{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{4}+x_{1} x_{3}^{2} x_{4}
\end{aligned}
$$

initial definition: recursive
Open problem!
known:

$$
\mathfrak{S}_{\beta} \mathfrak{S}_{\gamma}=\sum_{\alpha} c_{\beta \gamma}^{\alpha} \mathfrak{S}_{\alpha}
$$

$\beta, \gamma, \alpha$ : permutations. $c_{\beta, \gamma}^{\alpha}$ : non-negative integers.

## Motivation

Schubert polynomials are indexed by a permutation:

$$
\mathfrak{S}_{w}, \quad w \in S_{n}
$$

$$
\begin{aligned}
\mathfrak{S}_{[2,1,5,4,3]}= & x_{1}^{3} x_{2}+x_{1}^{2} x_{2}^{2}+x_{1}^{3} x_{3}+2 x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1}^{2} x_{3}^{2}+x_{1} x_{2} x_{3}^{2} \\
& +x_{1}^{3} x_{4}+x_{1}^{2} x_{2} x_{4}+x_{1} x_{2}^{2} x_{4}+x_{1}^{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{4}+x_{1} x_{3}^{2} x_{4}
\end{aligned}
$$

initial definition: recursive
Open problem!
known:

$$
\mathfrak{S}_{\beta} \mathfrak{S}_{\gamma}=\sum_{\alpha} c_{\beta \gamma}^{\alpha} \mathfrak{S}_{\alpha}
$$

$\beta, \gamma, \alpha$ : permutations. $c_{\beta, \gamma}^{\alpha}$ : non-negative integers.
want: a combinatorial rule for $c_{\beta \gamma}^{\alpha}$

## Motivation

Schubert polynomials are indexed by a permutation:

$$
\mathfrak{S}_{w}, \quad w \in S_{n}
$$

$$
\begin{aligned}
\mathfrak{S}_{[2,1,5,4,3]}= & x_{1}^{3} x_{2}+x_{1}^{2} x_{2}^{2}+x_{1}^{3} x_{3}+2 x_{1}^{2} x_{2} x_{3 j}^{\prime} x_{1}^{\prime} x_{2}^{2} x_{3}+x_{1}^{2} x_{3}^{2}+x_{1} x_{2} x_{3}^{2} \\
& +x_{1}^{3} x_{4}+x_{1}^{2} x_{2} x_{4}+x_{1} x_{2}^{2} x_{4}+x_{1}^{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{4}+x_{1} x_{3}^{2} x ;
\end{aligned}
$$

initial definition: recursive
Open problem!
known:

$$
\mathfrak{S}_{\beta} \mathfrak{S}_{\gamma}=\sum_{\alpha} c_{\beta \gamma}^{\alpha} \mathfrak{S}_{\alpha}
$$

$\beta, \gamma, \alpha$ : permutations. $c_{\beta, \gamma}^{\alpha}$ : non-negative integers. want: a combinatorial rule for $c_{\beta \gamma}^{\alpha}$

To put the parentheses ..

- Background about permutations

To put the parentheses ..

- Background about permutations
© Pipe dreams

To put the parentheses ..

- Background about permutations
© Pipe dreams
O Reduced factorizations with cutoff (RFC), Demazure crystal

To put the parentheses ..

- Background about permutations
© Pipe dreams
- Reduced factorizations with cutoff (RFC), Demazure crystal
- Conjecture about (2) and (3)


## Notation

Given a permutation $w \in S_{n}$, in window notation:

$$
w=[w(1), \ldots, w(n)] .
$$

## Notation

Given a permutation $w \in S_{n}$, in window notation:

$$
w=[w(1), \ldots, w(n)] .
$$

simple transitions: $s_{i}=(i i+1)$ in cycle notation.

## Notation

Given a permutation $w \in S_{n}$, in window notation:

$$
w=[w(1), \ldots, w(n)] .
$$

simple transitions: $s_{i}=(i i+1)$ in cycle notation. Note that $s_{1}, \ldots, s_{n-1}$ generate all of $S_{n}$.

$$
w=s_{i_{1}} \ldots s_{i_{l}}
$$

## Notation

Given a permutation $w \in S_{n}$, in window notation:

$$
w=[w(1), \ldots, w(n)] .
$$

simple transitions: $s_{i}=(i i+1)$ in cycle notation. Note that $s_{1}, \ldots, s_{n-1}$ generate all of $S_{n}$.

$$
w=s_{i_{1}} \ldots s_{i_{l}}
$$

length of $w$ : the least \# of $s_{i}$ 's to have $w$

## Notation

Given a permutation $w \in S_{n}$, in window notation:

$$
w=[w(1), \ldots, w(n)] .
$$

simple transitions: $s_{i}=(i i+1)$ in cycle notation. Note that $s_{1}, \ldots, s_{n-1}$ generate all of $S_{n}$.

$$
w=s_{i_{1}} \ldots s_{i_{l}}
$$

length of $w$ : the least \# of $s_{i}$ 's to have $w$ reduced word of $w: i_{1} \ldots i_{l}$

## Example

Recall $s_{i}=(i i+1)$

$$
\begin{gathered}
w \\
{[2,1,5,4,3]}
\end{gathered}
$$

## Example

Recall $s_{i}=(i i+1)$

$$
\begin{gathered}
w \\
{[2,1,5,4,3]} \\
(34)(45)(34)(12)(45)(45)
\end{gathered}
$$

## Example

Recall $s_{i}=(i i+1)$

$$
\begin{gathered}
w \\
{[2,1,5,4,3]} \\
(34)(45)(34)(12)(45)(45) \\
(34)(45)(34)(12) \underbrace{(45)(45)}_{e}
\end{gathered}
$$

## Example

Recall $s_{i}=(i i+1)$

$$
\begin{gathered}
w \\
{[2,1,5,4,3]} \\
(34)(45)(34)(12)(45)(45) \\
(34)(45)(34)(12) \underbrace{(45)(45)}_{e^{e}} \\
(34)(45)(34)(12)
\end{gathered}
$$

## Example

Recall $s_{i}=(i i+1)$

$$
\begin{gathered}
w \\
{[2,1,5,4,3]} \\
(34)(45)(34)(12)(45)(45) \\
(34)(45)(34)(12) \underbrace{(45)(45)}_{e} \\
(34)(45)(34)(12) \\
s_{3} s_{4} s_{3} s_{1}
\end{gathered}
$$

## Example

Recall $s_{i}=(i i+1)$

$$
\begin{gathered}
w \\
{[2,1,5,4,3]} \\
(34)(45)(34)(12)(45)(45) \\
(34)(45)(34)(12) \underbrace{(45)(45)}_{e} \\
(34)(45)(34)(12) \\
s_{3} s_{4} s_{3} s_{1}
\end{gathered}
$$

A reduced word of $w$ is 3431

## Example

Recall $s_{i}=(i i+1)$

$$
\begin{gathered}
w \\
{[2,1,5,4,3]} \\
(34)(45)(34)(12)(45)(45) \\
(34)(45)(34)(12) \underbrace{(45)(45)}_{e} \\
(34)(45)(34)(12) \\
s_{3} s_{4} s_{3} s_{1}
\end{gathered}
$$

A reduced word of $w$ is 3431 The length of $w$ is 4 .

## Example

Recall $s_{i}=(i i+1)$

$$
\begin{gathered}
w \\
{[2,1,5,4,3]} \\
(34)(45)(34)(12)(45)(45) \\
(34)(45)(34)(12) \underbrace{(45)(45)}_{e} \\
(34)(45)(34)(12)^{e} \\
s_{3} s_{4} s_{3} s_{1}
\end{gathered}
$$

A reduced word of $w$ is 3431
The length of $w$ is 4 .
All reduced words of $w$ are

$$
\begin{array}{llllllll}
3431 & 4341 & 3413 & 3143 & 1343 & 4314 & 4134 & 1434 .
\end{array}
$$

## Pipe Dreams

## Recall: put ( ) on $\mathfrak{S}_{w}$

## Pipe Dreams

Recall: put ( ) on $\mathfrak{S}_{w}$<br>Let's say $w \in S_{n}$ has length $l$

## Pipe Dreams

Recall: put ( ) on $\mathfrak{S}_{w}$
Let's say $w \in S_{n}$ has length $l$
We put $l$ crosses on a graph and do the following steps


Figure: An element in $\operatorname{PD}([2,1,5,4,3])$

## Pipe Dreams

Recall: put ( ) on $\mathfrak{S}_{w}$
Let's say $w \in S_{n}$ has length $l$
We put $l$ crosses on a graph and do the following steps


Figure: An element in $\operatorname{PD}([2,1,5,4,3])$

Step $(3)$ : connect loose ends

## Pipe Dreams

Recall: put ( ) on $\mathfrak{S}_{w}$
Let's say $w \in S_{n}$ has length $l$
We put $l$ crosses on a graph and do the following steps


Figure: An element in $\operatorname{PD}([2,1,5,4,3])$

Step $(3)$ : connect loose ends

## Pipe Dreams

Recall: put ( ) on $\mathfrak{S}_{w}$
Let's say $w \in S_{n}$ has length $l$
We put $l$ crosses on a graph and do the following steps


Figure: An element in $\operatorname{PD}([2,1,5,4,3])$

Step $(3)$ : connect loose ends
Step(4): represents the permutation ..?

## Pipe Dreams

Recall: put ( ) on $\mathfrak{S}_{w}$
Let's say $w \in S_{n}$ has length $l$
We put $l$ crosses on a graph and do the following steps


Figure: An element in $\operatorname{PD}([2,1,5,4,3])$

Step $(3)$ : connect loose ends
Step(4): represents the permutation ..?

## Pipe Dreams

Recall: put ( ) on $\mathfrak{S}_{w}$
Let's say $w \in S_{n}$ has length $l$
We put $l$ crosses on a graph and do the following steps


Figure: An element in $\left.\mathrm{PD}\left({ }^{(2 .)}, 1,5,4,3\right]\right)$

Step $(3)$ : connect loose ends
Step(4): represents the permutation ..?

## Pipe Dreams

Recall: put ( ) on $\mathfrak{S}_{w}$
Let's say $w \in S_{n}$ has length $l$
We put $l$ crosses on a graph and do the following steps


Figure: An element in $\operatorname{PD}([2, \underline{1}, \underline{5}, \underline{4}, \underline{3}])$

Step(3): connect loose ends
Step(4): represents the permutation ..?
If yes: it's a pipe dream.

## Pipe Dreams

Recall: put ( ) on $\mathfrak{S}_{w}$
Let's say $w \in S_{n}$ has length $l$
We put $l$ crosses on a graph and do the following steps


Figure: An element in $\operatorname{PD}([2,1,5,4,3])$

Step $(3)$ : connect loose ends
Step(4): represents the permutation ..?
If yes: it's a pipe dream.
Note: $n$-th row always has 0 cross

## Pipe Dreams

Recall: put ( ) on $\mathfrak{S}_{w}$
Let's say $w \in S_{n}$ has length $l$
We put $l$ crosses on a graph and do the following steps


Figure: An element in $\operatorname{PD}([2,1,5,4,3])$

Step $(3)$ : connect loose ends
Step(4): represents the permutation ..?
If yes: it's a pipe dream.
Note: $n$-th row always has 0 cross

## Pipe Dreams

Recall: put ( ) on $\mathfrak{S}_{w}$
Let's say $w \in S_{n}$ has length $l$
We put $l$ crosses on a graph and do the following steps


Figure: An element in $\operatorname{PD}([2,1,5,4,3])$

Step $(3)$ : connect loose ends
Step(4): represents the permutation ..?
If yes: it's a pipe dream.
Note: $n$-th row always has 0 cross

## Pipe Dreams

weight of a pipe dream is

## Pipe Dreams

weight of a pipe dream is

- a vector in $\mathbb{Z}^{n-1}$ such that


## Pipe Dreams

weight of a pipe dream is

- a vector in $\mathbb{Z}^{n-1}$ such that
- $i$-th component $=\#$ of crosses at $i$-th row


## Pipe Dreams

weight of a pipe dream is

- a vector in $\mathbb{Z}^{n-1}$ such that
- $i$-th component $=\#$ of crosses at $i$-th row


Figure: weight: $(2,2,0,0)$

## Pipe Dreams

weight of a pipe dream is

- a vector in $\mathbb{Z}^{n-1}$ such that
- $i$-th component $=\#$ of crosses at $i$-th row


Figure: weight: $(2,2,0,0)$
Theorem (Bergeron and Billey 1993)

$$
\mathfrak{S}_{w}=\sum_{p d \in \operatorname{PD}(w)} x_{i}^{\mathrm{wt}(p d)_{i}} .
$$

## Chute Moves

How to get all pipe dreams of $w$ ?

## Chute Moves

How to get all pipe dreams of $w$ ?
Let $p d \in \mathrm{PD}(w)$.

## Chute Moves

How to get all pipe dreams of $w$ ?
Let $p d \in \mathrm{PD}(w)$.
A chute move, denoted by $C_{i j}^{m}$, will

## Chute Moves

How to get all pipe dreams of $w$ ?
Let $p d \in \mathrm{PD}(w)$.
A chute move, denoted by $C_{i j}^{m}$, will move a cross from $(i, j)$

## Chute Moves

How to get all pipe dreams of $w$ ?
Let $p d \in \mathrm{PD}(w)$.
A chute move, denoted by $C_{i j}^{m}$, will move a cross from $(i, j)$ to $(i+1, j-m)$

## Chute Moves

How to get all pipe dreams of $w$ ?
Let $p d \in \mathrm{PD}(w)$.
A chute move, denoted by $C_{i j}^{m}$, will
move a cross from $(i, j)$ to $(i+1, j-m)$
With conditions:
must be crosses
must be elbows


Figure: an abstract chute move from Carvalho 2021, Bergeron and Billey 1993

## Chute Moves

How to get all pipe dreams of $w$ ?
Let $p d \in \mathrm{PD}(w)$.
A chute move, denoted by $C_{i j}^{m}$, will
move a cross from $(i, j)$ to $(i+1, j-m)$
With conditions:
must be crosses
must be elbows


Figure: an abstract chute move from Carvalho 2021, Bergeron and Billey 1993

## Chute Moves

How to get all pipe dreams of $w$ ?
Let $p d \in \mathrm{PD}(w)$.
A chute move, denoted by $C_{i j}^{m}$, will
move a cross from $(i, j)$ to $(i+1, j-m)$
With conditions:
must be crosses
must be elbows


Figure: an abstract chute move from Carvalho 2021, Bergeron and Billey 1993

## Chute Moves

How to get all pipe dreams of $w$ ?
Let $p d \in \mathrm{PD}(w)$.
A chute move, denoted by $C_{i j}^{m}$, will move a cross from $(i, j)$ to $(i+1, j-m)$
With conditions:
must be crosses
must be elbows


Figure: an abstract chute move from Carvalho 2021, Bergeron and Billey 1993

## Chute Moves

How to get all pipe dreams of $w$ ?
Let $p d \in \mathrm{PD}(w)$.
A chute move, denoted by $C_{i j}^{m}$, will move a cross from $(i, j)$ to $(i+1, j-m)$
With conditions:must be crosses
must be elbows


Figure: an abstract chute move from Carvalho 2021, Bergeron and Billey 1993
Notice! The destinations of strands don't change after a move i.e. same permutation

## Chute Moves

How to get all pipe dreams of $w$ ?
Let $p d \in \mathrm{PD}(w)$.
A chute move, denoted by $C_{i j}^{m}$, will
move a cross from $(i, j)$ to $(i+1, j-m)$
With conditions:
() must be crosses

- must be elbows


Figure: an abstract chute move from Carvalho 2021, Bergeron and Billey 1993
Notice! The destinations of strands don't change after a move i.e. same permutation

## Chute Moves

How to get all pipe dreams of $w$ ?
Let $p d \in \mathrm{PD}(w)$.
A chute move, denoted by $C_{i j}^{m}$, will
move a cross from $(i, j)$ to $(i+1, j-m)$
With conditions:
must be crosses
must be elbows


Figure: an abstract chute move from Carvalho 2021, Bergeron and Billey 1993
Notice! The destinations of strands don't change after a move i.e. same permutation

Recall a chute move $C_{i j}^{m}$

$$
(i, j) \mapsto(i+1, j-m)
$$



Figure: Two chute moves $\left(C_{14}^{2}, C_{23}^{1}\right)$ and a cross that can't be move


Nice facts!

Figure: $\mathrm{PD}([2,1,5,4,3])$ with all possible chute moves


Nice facts!

- $\mathrm{PD}(w)$ is closed under chute moves

Figure: $\mathrm{PD}([2,1,5,4,3])$ with all possible chute moves


Nice facts!

- $\mathrm{PD}(w)$ is closed under chute moves
- one PD generates all PDs

Figure: $\mathrm{PD}([2,1,5,4,3])$ with all possible chute moves


Nice facts!

- $\mathrm{PD}(w)$ is closed under chute moves
- one PD generates all PDs
- eg. PD at $(4,3)$ generates all PDs

Figure: $\mathrm{PD}([2,1,5,4,3])$ with all possible chute moves


Nice facts!

- $\mathrm{PD}(w)$ is closed under chute moves
- one PD generates all PDs
- eg. PD at $(4,3)$ generates all PDs Recall

$$
\mathfrak{S}_{w}=\sum_{p d \in \operatorname{PD}(w)} x_{i}^{\mathrm{wt}(p d)_{i}}
$$

Figure: $\mathrm{PD}([2,1,5,4,3])$ with all possible chute moves


Nice facts!

- $\mathrm{PD}(w)$ is closed under chute moves
- one PD generates all PDs
- eg. PD at $(4,3)$ generates all PDs

Recall

$$
\mathfrak{S}_{w}=\sum_{p d \in \operatorname{PD}(w)} x_{i}^{\mathrm{wt}(p d)_{i}}
$$

PD at $(4,3)$ has the weight $(3,1,0,0$,

Figure: $\mathrm{PD}([2,1,5,4,3])$ with all possible chute moves


Nice facts!

- $\mathrm{PD}(w)$ is closed under chute moves
- one PD generates all PDs
- eg. PD at $(4,3)$ generates all PDs Recall

$$
\mathfrak{S}_{w}=\sum_{p d \in \operatorname{PD}(w)} x_{i}^{\mathrm{wt}(p d)_{i}}
$$

PD at $(4,3)$ has the weight $(3,1,0,0$, $x_{1}^{3} x_{2}$ is special

Figure: $\mathrm{PD}([2,1,5,4,3])$ with all possible chute moves

## Something that we are not happy about ..

Chute moves $C_{i j}^{m}$ are indexed by too many stuffs!
Chute moves have many rules.

## Something that we are not happy about

Chute moves $C_{i j}^{m}$ are indexed by too many stuffs!
Chute moves have many rules.
Help with "putting parentheses"?

## Something that we are not happy about

Chute moves $C_{i j}^{m}$ are indexed by too many stuffs!
Chute moves have many rules.
Help with "putting parentheses"?

$$
\begin{aligned}
\mathfrak{S}_{[2,1,5,4,3]}= & \left(x_{1}^{3} x_{2}\right)+\left(x_{1}^{2} x_{2}^{2}+x_{1}^{3} x_{3}+2 x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1}^{2} x_{3}^{2}+x_{1} x_{2} x_{3}^{2}\right. \\
& \left.+x_{1}^{3} x_{4}+x_{1}^{2} x_{2} x_{4}+x_{1} x_{2}^{2} x_{4}+x_{1}^{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{4}+x_{1} x_{3}^{2} x_{4}\right)
\end{aligned}
$$

## Something that we are not happy about

Chute moves $C_{i j}^{m}$ are indexed by too many stuffs!
Chute moves have many rules.
Help with "putting parentheses"?

$$
\begin{aligned}
\mathfrak{S}_{[2,1,5,4,3]}= & \left(x_{1}^{3} x_{2}\right)+\left(x_{1}^{2} x_{2}^{2}+x_{1}^{3} x_{3}+2 x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1}^{2} x_{3}^{2}+x_{1} x_{2} x_{3}^{2}\right. \\
& \left.+x_{1}^{3} x_{4}+x_{1}^{2} x_{2} x_{4}+x_{1} x_{2}^{2} x_{4}+x_{1}^{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{4}+x_{1} x_{3}^{2} x_{4}\right)
\end{aligned}
$$

Reduced factorizations with cutoff can do a better job!

## Reduced Factorizations with Cutoff

## Recall $w=[2,1,5,4,3]=(34)(45)(34)(12)$.

A reduced word of $w$ is 3431 .

## Reduced Factorizations with Cutoff

Recall $w=[2,1,5,4,3]=(34)(45)(34)(12)$.
A reduced word of $w$ is 3431 .

Take a reduced word $\rho$ of $w$.

A reduced factorization with cutoff of $w$ is
partition $\rho$ into $n-1$ blocks
$|3||43| 1 \mid$

## Reduced Factorizations with Cutoff

Recall $w=[2,1,5,4,3]=(34)(45)(34)(12)$.
A reduced word of $w$ is 3431 .

Take a reduced word $\rho$ of $w$.

A reduced factorization with cutoff of $w$ is
partition $\rho$ into $n-1$ blocks
|3| |43|1|
elements in blocks increase
$|34||3| 1 \mid$

## Reduced Factorizations with Cutoff

Recall $w=[2,1,5,4,3]=(34)(45)(34)(12)$.
A reduced word of $w$ is 3431 .
Take a reduced word $\rho$ of $w$.

A reduced factorization with cutoff of $w$ is
partition $\rho$ into $n-1$ blocks elements in blocks increase blocks indexed from right


## Reduced Factorizations with Cutoff

Recall $w=[2,1,5,4,3]=(34)(45)(34)(12)$.
A reduced word of $w$ is 3431 .

Take a reduced word $\rho$ of $w$.

A reduced factorization with cutoff of $w$ is
partition $\rho$ into $n-1$ blocks
elements in blocks increase
blocks indexed from right
first element in block $i$ is at least $i$

## Reduced Factorizations with Cutoff

Recall $w=[2,1,5,4,3]=(34)(45)(34)(12)$.
A reduced word of $w$ is 3431 .

Take a reduced word $\rho$ of $w$.

A reduced factorization with cutoff of $w$ is
partition $\rho$ into $n-1$ blocks
elements in blocks increase blocks indexed from right
first element in block $i$ is at least $i$


For $[2,1,5,4,3]$, we partition the word 3431 into 4 blocks.
| $34|3| 1 \mid$ is legal $|3| 4|3| 1|,||34|| 31|$ are not .

## Operators on RFC

A lowering operators $f_{i}$ on RFCs has facts:

- $\operatorname{RFC}(w)$ is closed under $f_{i}$.


## Operators on RFC

A lowering operators $f_{i}$ on RFCs has facts:

- $\operatorname{RFC}(w)$ is closed under $f_{i}$.

O $f_{i}$ will move an element in block $i$ to block $i+1$ (familiar?)

## Operators on RFC

A lowering operators $f_{i}$ on RFCs has facts:

- $\operatorname{RFC}(w)$ is closed under $f_{i}$.
( $f_{i}$ will move an element in block $i$ to block $i+1$ (familiar?)
© There could only be at most 1 legal $f_{i}$ on a RFC for each $i$.


## Operators on RFC

A lowering operators $f_{i}$ on RFCs has facts:

- $\operatorname{RFC}(w)$ is closed under $f_{i}$.
(O $f_{i}$ will move an element in block $i$ to block $i+1$ (familiar?)
( ( There could only be at most 1 legal $f_{i}$ on a RFC for each $i$.

Recall chute move $C_{i j}^{m}$ will move a cross at $(i, j)$ to $(i+1, j-m)$.

## Weight Function on RFC

## A weight of RFC is

## Weight Function on RFC

A weight of RFC is

- a vector in $\mathbb{Z}^{n-1}$ such that


## Weight Function on RFC

A weight of RFC is

- a vector in $\mathbb{Z}^{n-1}$ such that
- $i$-th component $=\#$ of elements in $i$-th block


## Weight Function on RFC

A weight of RFC is

- a vector in $\mathbb{Z}^{n-1}$ such that
- $i$-th component $=\#$ of elements in $i$-th block $\mathrm{wt}(||34| 3| 1 \mid)=(1,1,2,0)$


## Weight Function on RFC

A weight of RFC is

- a vector in $\mathbb{Z}^{n-1}$ such that
- $i$-th component $=\#$ of elements in $i$-th block
$\mathrm{wt}(||34| 3| 1 \mid)=(1,1,2,0)$


## Theorem (S.)

There is a weight-preserving bijection $\phi$ between $\operatorname{RFC}\left(w^{-1}\right)$ and $\mathrm{PD}(w)$. i.e.

$$
\mathrm{wt}(r f c)=\mathrm{wt}(\phi(r f c)) \quad \text { or equivalently } \quad \mathrm{wt}(p d)=\mathrm{wt}\left(\phi^{-1}(p d)\right),
$$

for all $r f c \in \operatorname{RFC}\left(w^{-1}\right), p d \in \operatorname{PD}(w)$.

## Weight Function on RFC

A weight of RFC is

- a vector in $\mathbb{Z}^{n-1}$ such that
- $i$-th component $=\#$ of elements in $i$-th block
$\mathrm{wt}(||34| 3| 1 \mid)=(1,1,2,0)$


## Theorem (S.)

There is a weight-preserving bijection $\phi$ between $\operatorname{RFC}\left(w^{-1}\right)$ and $\mathrm{PD}(w)$. i.e.

$$
\mathrm{wt}(r f c)=\mathrm{wt}(\phi(r f c)) \quad \text { or equivalently } \quad \mathrm{wt}(p d)=\mathrm{wt}\left(\phi^{-1}(p d)\right),
$$

for all $r f c \in \operatorname{RFC}\left(w^{-1}\right), p d \in \operatorname{PD}(w)$.
We could study the structure of pipe dreams on RFC!

## Crystal on RFC



## Theorem (Assaf and Schilling 2018)

RFCs admit a structure of Demazure crystals.

## Crystal on RFC



## Crystal on RFC



$$
\begin{aligned}
\mathfrak{S}_{w} & =\sum_{p d \in \mathrm{PD}(w)} x_{i}^{\mathrm{wt}(p d)_{i}} \\
& =\sum_{r \in \mathrm{RFC}\left(w^{-1}\right)} x_{i}^{\mathrm{wt}(r)_{i}} \\
& =\sum_{\alpha} \kappa_{\alpha}
\end{aligned}
$$

## Verify

$$
\begin{aligned}
\mathfrak{S}_{[2,1,5,4,3]}= & x_{1}^{3} x_{2}+x_{1}^{2} x_{2}^{2}+x_{1}^{3} x_{3}+2 x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1}^{2} x_{3}^{2}+x_{1} x_{2} x_{3}^{2} \\
& +x_{1}^{3} x_{4}+x_{1}^{2} x_{2} x_{4}+x_{1} x_{2}^{2} x_{4}+x_{1}^{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{4}+x_{1} x_{3}^{2} x_{4}
\end{aligned}
$$

## Verify

$$
\begin{aligned}
\mathfrak{S}_{[2,1,5,4,3]}= & \underline{x_{1}^{3} x_{2}}+\underline{x_{1}^{2} x_{2}^{2}}+\underline{x_{1}^{3} x_{3}}+2 \underline{x_{1}^{2} x_{2} x_{3}}+\underline{x_{1} x_{2}^{2} x_{3}}+\underline{x_{1}^{2} x_{3}^{2}}+\underline{x_{1} x_{2} x_{3}^{2}} \\
& +\underline{x_{1}^{3} x_{4}}+\underline{x_{1}^{2} x_{2} x_{4}}+\underline{x_{1} x_{2}^{2} x_{4}}+\underline{x_{1}^{2} x_{3} x_{4}}+\underline{x_{1} x_{2} x_{3} x_{4}}+\underline{x_{1} x_{3}^{2} x_{4}}
\end{aligned}
$$

$$
\mathfrak{S}_{[2,1,5,4,3]}=\underline{\kappa_{(2,0,2,0)}}+\underline{\kappa_{(3,0,0,1)}}+\underline{\kappa_{(1,0,2,1)}} .
$$

## Future

Goal: set $C_{i j}^{m}=f_{i}$


## Future

Goal: set $C_{i j}^{m}=f_{i}$


## Bibliography

固Assaf，Sami and Anne Schilling（2018）．＂A Demazure crystal construction for Schubert polynomials＂．In：Algebr．Comb．1．2， pp．225－247．DOI：10．1007／s42081－018－0014－6．
围 Bergeron，Nantel and Sara Billey（1993）．＂RC－graphs and Schubert polynomials＂．In：Experiment．Math．2．4，pp．257－269．
圊 Carvalho，João Pedro（2021）．＂Saturation in Polytopes Generated by Polynomials：a Littelmann Path Model Approach＂．

