Crystal Chute Mares on Pipe Dreams
Yuxuan Sun University of Minnesota Twin Cities

$$
\text { SC } 2024
$$

joint work with Elizabeth Miliferić a Sarah Gold

TLDR: only look at a kind of chute moves replgeo ? $\Rightarrow$ they form a Demazare crystal on $P D_{S}$ Schubert sem $\Rightarrow \mathcal{S}$ decomposes as key polynomials

Reduced Pipe Dreams
Pick a permutation $w \in S_{n}$ of length $l$
(1) put $l+$ say $w=[21543] \in S_{5}$ (length 4)


$\leftarrow$ all $P D_{S}$ of [21543] generates all $P D_{s}$ using chute moves

$$
\begin{aligned}
& r_{r}++++ \\
& r_{r}+++r_{r} \\
& s_{r}+++r_{r} \\
& ++++r_{r}
\end{aligned}
$$

Pairing Process
given a $P D$, a pairing process on row i works as:
(1) Start at the rightmost cross at row $i$
(2) find a cross at row $i+1$ st. it's weakly right of $c$
(a) if $\exists$, say $c$ and $c^{\prime}$ are paired
(b) otherwise, $c$ is unpaired


Crystal Operators
Def a lowering operator $f_{i}$ on a PD
(1) a chute move on a cross at row $i$
(2) and the cross is the letthost unpaired cross after running a pairing process at row $i$

$$
\begin{array}{cll}
12345 & y^{\prime} 23 & 25 \\
1++\oplus & 1+ & ++ \\
2 & +\oplus & 2 \\
3 & + & \\
4 & & 4 \\
5 & & 5
\end{array}
$$


$e_{i}(P D)=0$
if all crosses at row $i+1$
are paired after pairing process at row $i$

$/ f_{2} \quad f_{1} \quad / f_{3} \quad f_{2}$



12345




| $f_{2}$ |
| :--- |
| $1 \underbrace{1} \underbrace{2}$ |
| 2 |
| 3 |
| 4 |
| 5 |

~


Thu (Gold-Milićević-S)
Let $w \in S_{n}$. The operators $e_{i}, f_{i}$ for $1 \leq i<n$ define a type $A_{n-1}$ Demarure crystal stricture on $\left\{\right.$ reduced $P D_{s}$ of $\left.w\right\}$

$$
\operatorname{RPD}(w)=\bigcup_{\substack{D \in R P D \\ \\ e_{i}(D)=0, \forall 1 \leqslant i<n}} B_{\pi_{D}}(\underbrace{w t(D)}_{\text {of }})
$$

highest weight
\# of $i$ partition for

Related: highest weight
Assaf-Schilling (RFC)
Lenart (coplactic operators biwords)
$\frac{\text { Crystals }+ \text { Pipe Dreams }}{\text { Example }} \omega=[21543]$


Corresponding Key
polynomials are indexed by the composition $a_{D}=\pi_{D}(\omega t(D))$


How to get $\pi_{D}$ ?
(1) what we just did
(2) RFC $\rightarrow$ Edelman-Greene insertion $\rightarrow$ lift (Assay \& Schilling)
(3) algorithm at sec 6 (could skip insertion)
(1) etc...

Follow - up ? chute move connecting keys?

Thank You !

