Theorey of Computation Notes

Yuxuan Sun

Spring 2022

Contents
1 regular languages 2
2 Non-regular languages 2
2.1 Exercises using pumping lemma 3
3 Context-Free Grammars 6
4 Push-Down Autonoma 8
5 decidability 11
5.1 undecidabilityo 12
6 reducibility 14
6.1 exercises 15

1 regular languages

Definition 1.1: regular language

language is called a regular language if some finite automaton recognizes
it.

2 Non-regular languages

Theorem 2.1: Pumping Lemma

If L is a regular language, then there is a positive integer n (typically, n
is the number of states of the DFA accepting L) such that, if # € L and
|z| > n, then there exist u,v,w € £* such that z = wvw and:

1. luww| <n

2. |lul >0

3. for each integer m > 0, uv™w € L

Corollary 2.2: infinite

Let the regular language L be accepted by a DFA with n states. Then
L is infinite if and only if there is € L s.t. n < |z] < 2n.

Theorem 2.3: Complement

The class of regular languages is closed under complement.

Definition 2.4: Indistinguishable Strings

Let L a language over ¥ and let z,y € ¥*. We say that z and y are
indistinguishable with respect to L and we write xz ~p, y if, for all z € ¥*,
either both xz and yz € L or neither is. Furthermore, ~; can be proved
to be an equivalence relation on 3*.

r
.

Theorem 2.5: Myhill-Nerode

A language L is regular if and only if the number of equivalence classes
of ~, is finite.

2.1 Exercises using pumping lemma

The followings are proofs of L NOT being a regular language using the pumping
lemma.

L={z€ (a+b)*|x+#2F}

Prove by contradiction.

Suppose L is regular. Then there exists n € N s.t. let £ = a"ba™™™. Because
n#n+nl ¢ € L. Because || =n+ 14 n+n! > n, there exists u,v,w € *
s.t. = uwvw

Based on the pumping lemma, we know that |uv| < n, based on the construction
of x, v could only contain a’s, denote as v = a’ for some i € Z~q. Because i is
an interger that’s smaller than n, we know that n!/i will be an integer, denoted
as m. i.e. im = nl. For later reference, denote v = a’, w = a*ba™ ™™, where
5 k€Z>p,and j+i+k=n

Notice that wv™Hw = wvv™w = a? T +kpgn 7! since we know j+i+k =n
and mi = n!, we have uv™t w = a"t"ba™*t™ which is not in L. We have a
contradiction to the pumping lemma, thus L is not regular.

L={aV |3(+1)<i<3(3j—1),i,j€Z,j>0}

The language could be rewritten as L = {ad’ | (j+1) <2i < (3j —1),i,j € Z,j
so that it’s easier to check whether our string is in the language.

Prove by contradiction.

Suppose L is regualr. Then there exists n € N s.t. let x = a™b™, the inequality
holds as long as n > 1 so « € L. Beacuse |z| = 2n > n, there exists u, v, w € ¥*
s.t. x = uvw

Based on the pumping lemma, we know that |uv| < n, based on the construction
of z, u,v could only contain a’s. Denote u = a’,v = a’ where i,j € Z>(but
j # 0. Denote w = a*b", k € Z>o.

Find any m s.t. mj > 3n, since j # 0 we know we could find such m. Then
notice that wv™w = a’*™I+kpn Tt is not in L since 2(i + mj + k) > 3n >
3n — 1, which violates the inequality of language. We have a contradiction to
the pumping lemma, thus L is not regular.

L={ze€ (a+b)*|ny(z)#10n,(z)}

We need to prove by its complement, namely
L={z € (a+b)*n.(z) =10n,(x)}

Prove by contradiction.

>0

}

Suppose L is regular. Then there exists n € N s.t. o = a'®"p". Because
10n = 10n, = € L. Because |x| = 10n + n > n, there exists u,v,w € ¥* s.t.
T = uvw.

Based on the pumping lemma, we know that |uv| < n, based on the construction
of z, u,v could only contain a’s. Denote u = a’,v = a’,w = aFb™ where
1,5,k € Z>o but j #0, and ¢ + j + k = 10n.

Take any m > 1, then uwv™w = a*t™T*p". Because j # 0 and m # 0, we know
that i +mj+k >i+j+k, ie. i4+mj+ k > 10n, so the inequality is broken
as i +mj + k # 10n. We have a contradiction to the pumping lemma, thus L
is not regular, and according to theorem in class, L is not regular.

L={abc*|j=i—kl|ijkeZik>0}

Prove by contradiction.

Suppose L is regular. Then there exists n € N s.t. = = a?"b"c”. Because
n = 12n—n|, x € L. Because |n|] = 2n +n +n = 4n > n, there exists
u,v,w € X* s.t. = uvw.

Based on the pumping lemma, we know that |uv| < n, based on the construction
of x, u,v could only contain a’s. Denote v = a*,v = a/,w = a*b"c" where
i,j,k € Z>o but j #0, and ¢ + j + k = 2n.

Take any m > 1, then wo™w = at™*kpne?. Because m # 0 and j # 0,
i+mj—+k > 2n. In other words, |i+mj+k—n| > |2n—n|, so |i+mj+k—n| # n.
uv™w ¢ L. We have a contradiction to the pumping lemma, thus L is not
regular.

L={a'¥c*|i,jkeZijk>0suchthatif i =1, then j =k}

We need to prove by its complement, namely

L={a'Vc"|i,j,k€Z,ijk>0st i=1andj#k}

Prove by contradiction.

Suppose L is regular. Then there exists n € N s.t. o = ab™c™t™. Becuase
n#n+nlandi=1, 2z € L. Because || =1+ n+n+n — n, there exists
u,v,w € X* s.t. = uvw.

Based on the pumping lemma, we know that |uv| < n, based on the construction
of x, there are several possible situations of v, specifically:

l.v=a

2

This will give us a contradiction because uv?w = a?w, but in L we don’t

allow i(the power of a) to be anything but 1.

2. v = ab’ for some i € Zg

This will give us a contradiction because uv?w = ab’ab’w, which is clearly

not in L because the language doesn’t allow sth like aba.
3. v =10 for some j € Zwg

The contradiction is similar with the one in 1.4.1. Denote v = ab’, w =
Vet where i,k € Zsg, and i + j + k = n. Since j < n, n!/j will give
us an integar, let’s denote it as m, i.e. mj = nl.

Notice uv™Hw = ab*ti+k+micn+n! hased on what we know, i 4+ j + k +
mj =n+nl, ie. ww™Hw ¢ L. We have a contradiction to the pumping
lemma, based on the theorem in class, we know L not regular implies L is
not regular either.

That all possible situations for v because |uv| < n so there is no way v could
contain c.

3 Context-Free Grammars

Definition 3.1: Context-Free Grammars

A context-free grammar is a 4-tuple G = (V, %, S, P)s.t.:
1. V is a finite set of variables, S € V is the start variable
2. ¥ is a finite set of terminal symbols or teminals s.t. VNX =g
3. P is a finite seet, whose elements are grammar rules or produc-
tions in the form
A=«

where A € V and o € (VUX)*

Definition 3.2: The Language Generated by a CFG

If G=(V,%,S,P) is a CFG, the language generated by G is
LG)={zeX | S =z}

Language L is a context-free language if there is a CFG G s.t. L = L(G)

,
\

Definition 3.3: derivation tree/parse tree

Let G be a CFG. The derivation tree for G is an ordered tree s.t.
1. the root is labeled S
2. every leaf has a label from ¥ U {e}
3. every interior vertex has a label from V'
4. if a vertex has label A, and its children are labeled (left to right)
ai,az,...,a,, where a; € VUX U{e} for j =1,2,3,...,n, then P
contains a production of the form P — aqas...a,

Definition 3.4: yield of a tree

the string of terminals obtained by reading the leaves of the tree from
left to right, omitting any e.

| '

Theorem 3.5: derivation tree and yield

If G is a CFG, then, for every = € L(G), there exists a derivation tree
of G whose yield is x . Conversely, the yield of any derivation tree is in

L(G)

,
\

Definition 3.6: leftmost derivation

A derivation in a CFG is a leftmost derivation if, at each step, a produc-
tion is applied to the leftmost variable-occurrence in the current string.

,
\

Theorem 3.7: equivalent statement of = € L(G)

1. x has more than one derivation tree
2. x has more than one leftmost derivation
3. x has more than one rightmost derivation

Definition 3.8: ambiguous CFG

A CFG G is ambiguous if, there exists z € L(G) s.t. z has more than
one derivation tree.

4 Push-Down Autonoma

Definition 4.1: PDA

M =(Q,%,T,6,q0, Z, F) where

Q is a finite set of states

Y. is a finite set which is called the input alphabet

I" is a finite set which is called the stack alphabet

0 is a finite subset of @ x (X U {e}) x I' x Q x I'*, the transition
relation

qo € @ is the start state

Z € T is the initial stack symbol

F C @ is the set of accepting states

\.

Definition 4.2: Configurations and Moves

Let M = (Q,%,T, qo, Zo, F,d) be a PDA

A configuration/instananeous discription of M is a triplet (p, w,)
s.t. when M is on state p € @, the part of the input string that is about
to be read is string w € ¥* and, the contents of the whole stack are given
my string v € I'*

Two configurations (p,ow, Za) and (¢, w,vya) (for
p,qEQ,0€ X, weX* Zel,,a,v€T™*) are said to form a move in
one step, written as

(p,ow, Za) (g, w,ya)

whenenver (p, o0, Z) 3 (q,7)

Definition 4.3: chains of moves

Let Co,C4,...,C, be a sequence of configurations, a chain of moves
in n steps, Co - Cy F ---+ C,, could be written as

Co F" C,

Definition 4.4: Right-, Left-, Regular and Linear Grammars

Let G = (V,%, S, P) a CFG.
G is called left-linear if all productions are of one of the two forms,

A— zB
A—zx

where A, B €V and z € ¥*

(similar for left-linear)

G is called regular grammar if ti’s either right- or left-linear

G is called linear grammar if at most one variable can occur on the right
side of any production, independently of its position.

Definition 4.5: Chomsky Normal Form

A CFG G = (V, %, S, P) is in Chomsky normal form if all productions
are of the form
A— BC

or
A—a

where A, B,C' € V and a € ¥ (notice a # ¢)

Theorem 4.6

7
| .

Modify G’s productions, an equivalent CFG G in Chomsky normal form
can be created.

Theorem 4.7

For every CFG G, there is a PDA M s.t. L(M) = L(G)

Theorem 4.8: Pumping Lemma for Context-Free Languages

If L is a context-free language over alphabet X, then there is a positive
integer n s.t., for every x € L with |z| > n, x can be written as & =
uvwzxy for some string w, v, w, z,y € ¥* satisfying:

lowz| <n

lvx] > 1,ie. v#ecorxF#e

for every integer m > 0, wv™wx™y € L

Corollary 4.9

Let L be a CFL and n the positive integer from the pumping lemma,
then:

L # o iff there exsits w € L with |w| <n

L is infinite iff there exists z € L s.t. n < |z| < 2n

Theorem 4.10: Ogden’s Lemma

If L is a context-free language over alphabet 3, then there is a opstivie
integer n s.t. for every & € L with |z| > n, if we mark at least n symbols
of z, x can be written as x = wvwaxy, for some strings u, v, w,x,y € Sx
satisfying

the string vwax contains at most n marked symbols

the string vz contains at least one marked symbol

for every integer m > 0, uv™wz™y € L

Theorem 4.11

The class of CFLs is closed under union, concatenation, and Kline star
the class of CFLs is not closed under intersection and complementation
the intersection of a CFL with a regular language is a CFL

10

5 decidability

Definition 5.1: Turing-decidable, decidable

A language is Turing-decidable or decidable if some Turing machine
decides it: always make a decision to accept of reject.

Theorem 5.2: Apr,4 is a decidable language

Let

Apra = {{(B,w) | B is a DFA that accepts input string w}.

Proof Idea

We need to present a TM M that decides Apra.

Let M be a turning machine such that:

On input (B, w), where B is a DFA and w is a string:
1. simulate B on input w

2. if the simulation ends in an accept state, accepts. If it ends in a non-
accepting state, reject.

Theorem 5.3: Ayra is a decidable language

Anrpa = {(B,w) | B is an NFA that accepts input string w}

Theorem 5.4: Arpx is a decidable language

Arpx = {(R,w) | R is a regular expression that generates string w}

Theorem 5.5: Fpry is a decidable language

Epra:={(A)| Ais a DFA and L(A) = o}

In other words, A doesn’t accept anything (not even the empty string).

Proof

Design a turning machine T s.t. given input (A) where A is a DFA:
1. mark the start state of A
2. repeeat until no new states get marked

3. mark any state that has a transition coming into it from any state that is
already market

4. if no accept state is marked, accept; otherwise reject.

Theorem 5.6: EQpra is a decidable language.

EQpra :={(A,B)| A, B are DFAs and L(A) = L(B)}

Proof

Let’s use Theorem 5.5. To use it, we need to construct a DFA, denoted as C,
st. L(C) =@.

To do so, we use symmetric difference of L(A) and L(B), namely
L(C) = (L(A) N L(B)) U (L(A) N L(B))

Notice that if L(A) C L(B), then L(A)NL(B) = @, similar for the second part.
Thus, if L(A) = L(B) <= L(C) = @. Now we have our L(C), the turning
machine construction is easy.

Construct a turning machine F' s.t. given input (A4, B), where A, B are DFAs
1. construct DFA C as shown above
2. run a turning machine 7" on C' as in Theorem ?? on input (C).

3. if T accepts, accept. If T rejects, reject.

Theorem 5.7: Acrg is a decidable language

Acra = {(G,w) | G is a CFG that generates string w}

Theorem 5.8: Fcrg is a decidable language

Ecre :={(G) | Gis a CFG and L(G) = &}

5.1 undecidability

Theorem 5.9: A7), is undecidable

Arpyr = {{M,w) | M is a TM and M accepts w}

Notice that Arj; is turning-recognizable, i.e. we could build a turning
machine that might loop when M loops on w. This tells us that turing-
recognizable is more powerful than decidable.

Definition 5.10: co-Turing-recognizable

A language is co-Turing-recognizable if it is the complement of a Turing-
reconizable language. (its complement is Turing-recognizable).

12

Theorem 5.11

A language is decidable iff it is Turing-recognizable and co-Turing-
recognizable.

in other words, A langugae is decidable iff it is Turing-recognizable and its
complement is Turing-recognizable.

in terms of undecidability, we just take the negation of the statement, namely:
a language is undecidable iff it is not Turing-recognizable or its complement is
not Turing-recognizable.

Corollary 5.12: A7), is not Turing-recognizable

Prove by contradiction. If Ay, is Turing-recognizable, then by the
theorem above, Arjs should be decidable, yet we know it’s not. Thus
A7y has to be NOT turing-recognizable.

Theorem 5.13: E7,,; is undecidable

Ery :={(M)| M isaTM and L(M) = o}

Theorem 5.14: REGULART), is not decidable

REGULARyy = {{(M) | M is a TM and L(M) is a regular language }

Theorem 5.15: EQr); is not decidable

EQTM = {(Ml,M2> | Ml,MQ are TMs and L(Ml) = L(Mg)}

13

6 reducibility

Definition 6.1: computable function

A function f : ¥* — ¥* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Definition 6.2: mapping reducible

| r

Language A is mapping reducible to language B, denoted as A <,,, B,
if there is a computable function f : X* — ¥*, where for every w,

weE A<= f(w) € B.

The function f is called the reduction from A to B.

Theorem 6.3

If A <,, B and B is decidable, then A is decidable.

Notice the contrapositive is:

Corollary 6.4

If A<,, B and A is undecidable, then B is undecidable.

| '

Theorem 6.5

If A <,,, B and B is turing-recognizable, then A is turing-recognizable.

similarly, for its contrapostivie:

Corollary 6.6

If A <,, B and A is not Turing-recognizable, then B is not Turing-
recognizable.

14

6.1 exercises

If A <,, B and B is a regular language, does that imply that A is a
regular language?

Answer: No Recall from corollary 5.23 from book that: if A <,,, B and A is
undecidable, then B is undecidable.

Take the contra-positive of the corollary, we’ll have: if B is decidable then either
A 4., B or Ais decidable.

Since we have B, as a regular language, is decidable and A < B, we know
that A is decidable. Thus let’s find any decidable language that’s not a regular
expression. Take

A={a"b"}

we know it’s decidable becuase it could be regonized by a PDA. To show A <,,
B, we could have the following computable function:

Flw) = {0 if w=a"b"

1 otherwise

clearly that w € A <= f(w) € B. Thus we’ve found a counter example.

15

	regular languages
	Non-regular languages
	Exercises using pumping lemma

	Context-Free Grammars
	Push-Down Autonoma
	decidability
	undecidability

	reducibility
	exercises

