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1 regular languages

Definition 1.1: regular language

language is called a regular language if some finite automaton recognizes
it.

2 Non-regular languages

Theorem 2.1: Pumping Lemma

If L is a regular language, then there is a positive integer n (typically, n
is the number of states of the DFA accepting L ) such that, if x ∈ L and
|x| ≥ n, then there exist u, v, w ∈ Σ∗ such that x = uvw and:

1. |uv| ≤ n
2. |u| > 0
3. for each integer m ≥ 0, uvmw ∈ L

Corollary 2.2: infinite

Let the regular language L be accepted by a DFA with n states. Then
L is infinite if and only if there is x ∈ L s.t. n ≤ |x| < 2n.

Theorem 2.3: Complement

The class of regular languages is closed under complement.

Definition 2.4: Indistinguishable Strings

Let L a language over Σ and let x, y ∈ Σ∗. We say that x and y are
indistinguishable with respect to L and we write x ≈L y if, for all z ∈ Σ∗,
either both xz and yz ∈ L or neither is. Furthermore, ≈L can be proved
to be an equivalence relation on Σ∗.

Theorem 2.5: Myhill-Nerode

A language L is regular if and only if the number of equivalence classes
of ≈L is finite.
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2.1 Exercises using pumping lemma

The followings are proofs of L NOT being a regular language using the pumping
lemma.

L = {x ∈ (a+ b)∗|x 6= xR}

Prove by contradiction.

Suppose L is regular. Then there exists n ∈ N s.t. let x = anban+n!. Because
n 6= n + n!, x ∈ L. Because |x| = n + 1 + n + n! > n, there exists u, v, w ∈ Σ∗

s.t. x = uvw

Based on the pumping lemma, we know that |uv| ≤ n, based on the construction
of x, v could only contain a’s, denote as v = ai for some i ∈ Z>0. Because i is
an interger that’s smaller than n, we know that n!/i will be an integer, denoted
as m. i.e. im = n!. For later reference, denote u = aj , w = akban+n!, where
j, k ∈ Z≥0, and j + i+ k = n

Notice that uvm+1w = uvvmw = aj+i+mi+kban+n!, since we know j+ i+ k = n
and mi = n!, we have uvm+1w = an+n!ban+n!, which is not in L. We have a
contradiction to the pumping lemma, thus L is not regular.

L =
{
aibj | 12 (j + 1) ≤ i ≤ 1

2 (3j − 1), i, j ∈ Z, j ≥ 0
}

The language could be rewritten as L =
{
aibj | (j + 1) ≤ 2i ≤ (3j − 1), i, j ∈ Z, j ≥ 0

}
so that it’s easier to check whether our string is in the language.

Prove by contradiction.

Suppose L is regualr. Then there exists n ∈ N s.t. let x = anbn, the inequality
holds as long as n ≥ 1 so x ∈ L. Beacuse |x| = 2n > n, there exists u, v, w ∈ Σ∗

s.t. x = uvw

Based on the pumping lemma, we know that |uv| ≤ n, based on the construction
of x, u, v could only contain a’s. Denote u = ai, v = aj where i, j ∈ Z≥0 but
j 6= 0. Denote w = akbn, k ∈ Z≥0.

Find any m s.t. mj > 3n, since j 6= 0 we know we could find such m. Then
notice that uvmw = ai+mj+kbn. It is not in L since 2(i + mj + k) > 3n >
3n − 1, which violates the inequality of language. We have a contradiction to
the pumping lemma, thus L is not regular.

L = {x ∈ (a+ b)∗ | na(x) 6= 10nb(x)}

We need to prove by its complement, namely

L = {x ∈ (a+ b)∗|na(x) = 10nb(x)}

Prove by contradiction.
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Suppose L is regular. Then there exists n ∈ N s.t. x = a10nbn. Because
10n = 10n, x ∈ L. Because |x| = 10n + n > n, there exists u, v, w ∈ Σ∗ s.t.
x = uvw.

Based on the pumping lemma, we know that |uv| ≤ n, based on the construction
of x, u, v could only contain a’s. Denote u = ai, v = aj , w = akbn where
i, j, k ∈ Z≥0 but j 6= 0, and i+ j + k = 10n.

Take any m ≥ 1, then uvmw = ai+mj+kbn. Because j 6= 0 and m 6= 0, we know
that i + mj + k > i + j + k, i.e. i + mj + k > 10n, so the inequality is broken
as i + mj + k 6= 10n. We have a contradiction to the pumping lemma, thus L
is not regular, and according to theorem in class, L is not regular.

L =
{
aibjck | j = |i− k|, i, j, k ∈ Z, i, k ≥ 0

}
Prove by contradiction.

Suppose L is regular. Then there exists n ∈ N s.t. x = a2nbncn. Because
n = |2n − n|, x ∈ L. Because |n| = 2n + n + n = 4n > n, there exists
u, v, w ∈ Σ∗ s.t. x = uvw.

Based on the pumping lemma, we know that |uv| ≤ n, based on the construction
of x, u, v could only contain a’s. Denote u = ai, v = aj , w = akbncn where
i, j, k ∈ Z≥0 but j 6= 0, and i+ j + k = 2n.

Take any m ≥ 1, then uvmw = ai+mj+kbncn. Because m 6= 0 and j 6= 0,
i+mj+k > 2n. In other words, |i+mj+k−n| > |2n−n|, so |i+mj+k−n| 6= n.
uvmw 6∈ L. We have a contradiction to the pumping lemma, thus L is not
regular.

L =
{
aibjck | i, j, k ∈ Z, i, j, k ≥ 0 such that if i = 1, then j = k

}
We need to prove by its complement, namely

L =
{
aibjck | i, j, k ∈ Z, i, j, k ≥ 0 s.t. i = 1 and j 6= k

}
Prove by contradiction.

Suppose L is regular. Then there exists n ∈ N s.t. x = abncn+n!. Becuase
n 6= n + n! and i = 1, x ∈ L. Because |x| = 1 + n + n + n 7→ n, there exists
u, v, w ∈ Σ∗ s.t. x = uvw.

Based on the pumping lemma, we know that |uv| ≤ n, based on the construction
of x, there are several possible situations of v, specifically:

1. v = a

This will give us a contradiction because uv2w = a2w, but in L we don’t
allow i(the power of a) to be anything but 1.
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2. v = abi for some i ∈ Z>0

This will give us a contradiction because uv2w = abiabiw, which is clearly
not in L because the language doesn’t allow sth like aba.

3. v = bj for some j ∈ Z>0

The contradiction is similar with the one in 1.4.1. Denote u = abi, w =
bkcn+n! where i, k ∈ Z≥0, and i + j + k = n. Since j < n, n!/j will give
us an integar, let’s denote it as m, i.e. mj = n!.

Notice uvm+1w = abi+j+k+mjcn+n!, based on what we know, i+ j + k +
mj = n + n!, i.e. uvm+1w 6∈ L. We have a contradiction to the pumping
lemma, based on the theorem in class, we know L not regular implies L is
not regular either.

That all possible situations for v because |uv| ≤ n so there is no way v could
contain c.
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3 Context-Free Grammars

Definition 3.1: Context-Free Grammars

A context-free grammar is a 4-tuple G = (V,Σ, S, P )s.t.:
1. V is a finite set of variables, S ∈ V is the start variable
2. Σ is a finite set of terminal symbols or teminals s.t. V ∩ Σ = ∅
3. P is a finite seet, whose elements are grammar rules or produc-

tions in the form
A→ α

where A ∈ V and α ∈ (V ∪ Σ)∗

Definition 3.2: The Language Generated by a CFG

If G = (V,Σ, S, P ) is a CFG, the language generated by G is

L(G) = {x ∈ Σ∗ | S =⇒∗
G x}

Language L is a context-free language if there is a CFG G s.t. L = L(G)

Definition 3.3: derivation tree/parse tree

Let G be a CFG. The derivation tree for G is an ordered tree s.t.
1. the root is labeled S
2. every leaf has a label from Σ ∪ {ε}
3. every interior vertex has a label from V
4. if a vertex has label A, and its children are labeled (left to right )
a1, a2, . . . , an, where aj ∈ V ∪Σ∪ {ε} for j = 1, 2, 3, . . . , n, then P
contains a production of the form P → a1a2 . . . an

Definition 3.4: yield of a tree

the string of terminals obtained by reading the leaves of the tree from
left to right, omitting any ε.

Theorem 3.5: derivation tree and yield

If G is a CFG, then, for every x ∈ L(G), there exists a derivation tree
of G whose yield is x . Conversely, the yield of any derivation tree is in
L(G)

Definition 3.6: leftmost derivation

A derivation in a CFG is a leftmost derivation if, at each step, a produc-
tion is applied to the leftmost variable-occurrence in the current string.
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Theorem 3.7: equivalent statement of x ∈ L(G)

1. x has more than one derivation tree
2. x has more than one leftmost derivation
3. x has more than one rightmost derivation

Definition 3.8: ambiguous CFG

A CFG G is ambiguous if, there exists x ∈ L(G) s.t. x has more than
one derivation tree.
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4 Push-Down Autonoma

Definition 4.1: PDA

M = (Q,Σ,Γ, δ, q0, Z, F ) where
• Q is a finite set of states
• Σ is a finite set which is called the input alphabet
• Γ is a finite set which is called the stack alphabet
• δ is a finite subset of Q × (Σ ∪ {ε}) × Γ × Q × Γ∗, the transition

relation
• q0 ∈ Q is the start state
• Z ∈ Γ is the initial stack symbol
• F ⊆ Q is the set of accepting states

Definition 4.2: Configurations and Moves

Let M = (Q,Σ,Γ, q0, Z0, F, δ) be a PDA
A configuration/instananeous discription of M is a triplet (p, w, γ)
s.t. when M is on state p ∈ Q, the part of the input string that is about
to be read is string w ∈ Σ∗ and, the contents of the whole stack are given
my string γ ∈ Γ∗

Two configurations (p, σw,Zα) and (q, w, γα) (for
p, q ∈ Q, σ ∈ Σε, w ∈ Σ∗, Z ∈ Γε, α, γ ∈ Γ∗) are said to form a move in
one step, written as

(p, σw,Zα) ` (q, w, γα)

whenenver δ(p, σ, Z) 3 (q, γ)

Definition 4.3: chains of moves

Let C0, C1, . . . , Cn be a sequence of configurations, a chain of moves
in n steps, C0 ` C1 ` · · · ` Cn, could be written as

C0 `n Cn

Definition 4.4: Right-, Left-, Regular and Linear Grammars

Let G = (V,Σ, S, P ) a CFG.
G is called left-linear if all productions are of one of the two forms,

A→ xB

A→ x

where A,B ∈ V and x ∈ Σ∗

(similar for left-linear)
G is called regular grammar if ti’s either right- or left-linear
G is called linear grammar if at most one variable can occur on the right
side of any production, independently of its position.
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Definition 4.5: Chomsky Normal Form

A CFG G = (V,Σ, S, P ) is in Chomsky normal form if all productions
are of the form

A→ BC

or
A→ a

where A,B,C ∈ V and a ∈ Σ (notice a 6= ε)

Theorem 4.6

Modify G’s productions, an equivalent CFG Ĝ in Chomsky normal form
can be created.

Theorem 4.7

For every CFG G, there is a PDA M s.t. L(M) = L(G)

Theorem 4.8: Pumping Lemma for Context-Free Languages

If L is a context-free language over alphabet Σ, then there is a positive
integer n s.t., for every x ∈ L with |x| ≥ n, x can be written as x =
uvwxy for some string u, v, w, x, y ∈ Σ∗ satisfying:
|vwx| ≤ n
|vx| ≥ 1, i.e. v 6= ε or x 6= ε
for every integer m ≥ 0, uvmwxmy ∈ L

Corollary 4.9

Let L be a CFL and n the positive integer from the pumping lemma,
then:
L 6= ∅ iff there exsits w ∈ L with |w| < n
L is infinite iff there exists z ∈ L s.t. n ≤ |z| < 2n

Theorem 4.10: Ogden’s Lemma

If L is a context-free language over alphabet Σ, then there is a opstivie
integer n s.t. for every x ∈ L with |x| ≥ n, if we mark at least n symbols
of x, x can be written as x = uvwxy, for some strings u, v, w, x, y ∈ Σ∗
satisfying
the string vwx contains at most n marked symbols
the string vx contains at least one marked symbol
for every integer m ≥ 0, uvmwxmy ∈ L
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Theorem 4.11

The class of CFLs is closed under union, concatenation, and Kline star
the class of CFLs is not closed under intersection and complementation
the intersection of a CFL with a regular language is a CFL
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5 decidability

Definition 5.1: Turing-decidable, decidable

A language is Turing-decidable or decidable if some Turing machine
decides it: always make a decision to accept of reject.

Theorem 5.2: ADFA is a decidable language

Let

ADFA = {〈B,w〉 | B is a DFA that accepts input string w} .

Proof Idea

We need to present a TM M that decides ADFA.

Let M be a turning machine such that:

On input 〈B,w〉, where B is a DFA and w is a string:

1. simulate B on input w

2. if the simulation ends in an accept state, accepts. If it ends in a non-
accepting state, reject.

Theorem 5.3: ANFA is a decidable language

ANFA := {〈B,w〉 | B is an NFA that accepts input string w}

Theorem 5.4: AREX is a decidable language

AREX := {〈R,w〉 | R is a regular expression that generates string w}

Theorem 5.5: EDFA is a decidable language

EDFA := {〈A〉 | A is a DFA and L(A) = ∅}

In other words, A doesn’t accept anything (not even the empty string).

Proof

Design a turning machine T s.t. given input 〈A〉 where A is a DFA:

1. mark the start state of A

2. repeeat until no new states get marked

3. mark any state that has a transition coming into it from any state that is
already market

4. if no accept state is marked, accept; otherwise reject.
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Theorem 5.6: EQDFA is a decidable language.

EQDFA := {〈A,B〉 | A,B are DFAs and L(A) = L(B)}

Proof

Let’s use Theorem 5.5. To use it, we need to construct a DFA, denoted as C,
s.t. L(C) = ∅.

To do so, we use symmetric difference of L(A) and L(B), namely

L(C) =
(
L(A) ∩ L(B)

)
∪
(
L(A) ∩ L(B)

)
Notice that if L(A) ⊆ L(B), then L(A)∩L(B) = ∅, similar for the second part.
Thus, if L(A) = L(B) ⇐⇒ L(C) = ∅. Now we have our L(C), the turning
machine construction is easy.

Construct a turning machine F s.t. given input 〈A,B〉, whereA,B are DFAs

1. construct DFA C as shown above

2. run a turning machine T on C as in Theorem ?? on input 〈C〉.

3. if T accepts, accept. If T rejects, reject.

Theorem 5.7: ACFG is a decidable language

ACFG := {〈G,w〉 | G is a CFG that generates string w}

Theorem 5.8: ECFG is a decidable language

ECFG := {〈G〉 | G is a CFG and L(G) = ∅}

5.1 undecidability

Theorem 5.9: ATM is undecidable

ATM := {〈M,w〉 |M is a TM and M accepts w}

Notice that ATM is turning-recognizable, i.e. we could build a turning
machine that might loop when M loops on w. This tells us that turing-
recognizable is more powerful than decidable.

Definition 5.10: co-Turing-recognizable

A language is co-Turing-recognizable if it is the complement of a Turing-
reconizable language. (its complement is Turing-recognizable).
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Theorem 5.11

A language is decidable iff it is Turing-recognizable and co-Turing-
recognizable.

in other words, A langugae is decidable iff it is Turing-recognizable and its
complement is Turing-recognizable.

in terms of undecidability, we just take the negation of the statement, namely:
a language is undecidable iff it is not Turing-recognizable or its complement is
not Turing-recognizable.

Corollary 5.12: ATM is not Turing-recognizable

Prove by contradiction. If ATM is Turing-recognizable, then by the
theorem above, ATM should be decidable, yet we know it’s not. Thus
ATM has to be NOT turing-recognizable.

Theorem 5.13: ETM is undecidable

ETM := {〈M〉 |M is a TM and L(M) = ∅}

Theorem 5.14: REGULARTM is not decidable

REGULARTM = {〈M〉 |M is a TM and L(M) is a regular language }

Theorem 5.15: EQTM is not decidable

EQTM := {〈M1,M2〉 |M1,M2 are TMs and L(M1) = L(M2)}
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6 reducibility

Definition 6.1: computable function

A function f : Σ∗ → Σ∗ is a computable function if some Turing
machine M , on every input w, halts with just f(w) on its tape.

Definition 6.2: mapping reducible

Language A is mapping reducible to language B, denoted as A ≤m B,
if there is a computable function f : Σ∗ → Σ∗, where for every w,

w ∈ A⇐⇒ f(w) ∈ B.

The function f is called the reduction from A to B.

Theorem 6.3

If A ≤m B and B is decidable, then A is decidable.

Notice the contrapositive is:

Corollary 6.4

If A ≤m B and A is undecidable, then B is undecidable.

Theorem 6.5

If A ≤m B and B is turing-recognizable, then A is turing-recognizable.

similarly, for its contrapostivie:

Corollary 6.6

If A ≤m B and A is not Turing-recognizable, then B is not Turing-
recognizable.
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6.1 exercises

If A ≤m B and B is a regular language, does that imply that A is a
regular language?

Answer: No Recall from corollary 5.23 from book that: if A ≤m B and A is
undecidable, then B is undecidable.

Take the contra-positive of the corollary, we’ll have: if B is decidable then either
A �m B or A is decidable.

Since we have B, as a regular language, is decidable and A ≤ B, we know
that A is decidable. Thus let’s find any decidable language that’s not a regular
expression. Take

A = {anbn}

we know it’s decidable becuase it could be regonized by a PDA. To show A ≤m

B, we could have the following computable function:

f(w) =

{
0 if w = anbn

1 otherwise

clearly that w ∈ A⇐⇒ f(w) ∈ B. Thus we’ve found a counter example.
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