Algebra 2 Representationl Theory Notes
 Yuxuan Sun
 Spring 2022

Contents

1 Group Representations 2
2 characters 3
3 Roots of unity 4
4 Maschke 4

1 Group Representations

Definition 1.1: Representation

A homomorphism

$$
\rho: G \rightarrow G L_{n}(\mathbb{C})
$$

is called a representation of G of degree/dimension n

Key idea: (group theory) to (linear algebra)

Example 1.2: Sign Representation

$$
\rho_{s}: S_{n} \rightarrow G L_{1}(\mathbb{R})
$$

by

$$
\pi \mapsto \begin{cases}{[1]} & \pi \text { even } \\ {[-1]} & \pi \text { odd }\end{cases}
$$

Definition 1.3: permutation representation

Let G be a group which acts faithfully on a set S. The map

$$
\begin{aligned}
\phi: G & \rightarrow \operatorname{Perm}(S) \quad \text { by } \\
g & \mapsto \pi_{g}
\end{aligned}
$$

Is called the permutation representation of G associated to the action G acts on S.

Definition 1.4: Standard Rpresentation

if G acts on \mathbb{C}^{n} by linear transformation then G admits the standard representation:

$$
\rho_{s t d}: G \rightarrow G L_{n}(\mathbb{C})
$$

by

$$
g \mapsto A_{g}=\left[g\left(e_{1}\right) \ldots g\left(e_{n}\right)\right]
$$

Definition 1.5: regular representation

The permutation representation for the action G actws on G by left multiplication gives rise to a one-to-one homomorphism $\pi: G \rightarrow \operatorname{Perm}(G)$. If $|G|=n$, the composition:

$$
\begin{gathered}
\rho_{\mathrm{reg}}: G \xrightarrow{\pi} S_{n} \xrightarrow{P} G L_{n}(\mathbb{R}) \quad \text { by } \\
g \longmapsto \pi_{g} \longmapsto P_{g}
\end{gathered}
$$

where P_{g} is the premutation matrix associated to the permutation π_{g} is then also a one-to-one homomorphism $\rho_{\text {reg }}$ called the (left) regular representation of G.

Corollary 1.6: Representation to row operation is homomorphism

$$
\rho: G \rightarrow G L_{n}(\mathbb{C})
$$

is a homomorphism.

Definition 1.7: G-invariant

Let G acts on \mathbb{C}^{n}. A subspace $V \subset \mathbb{C}^{n}$ is G-invariant if $G(V) \subset V$, meaning $g * v \in V$ for all $g \in G, v \in V$

Definition 1.8: Irreducible representation

A representation of G is called irreducible if it has no proper G-invariant subspaces.

Definition 1.9: isomorphic representations

Two representations are isomorphic if they differ by a change of basis of \mathbb{C}^{n}

2 characters

Theorem 2.1: characters + isomorphism

G is finite
reps are isomorphic \Longleftrightarrow they have the same characters number of distinct irreducible reps \Longleftrightarrow number of conjugacy classes in G

Theorem 2.2: 5 theorems

Denote ρ_{i} as distinct representation of a finite group G, with characters χ_{i}

1. irreducible characters are orthonormal,

$$
\left\langle\chi_{i}, \chi_{j}\right\rangle=\frac{1}{|G|} \sum_{g \in G} \overline{\chi_{i}(g)} \chi\left(j(g)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}\right.
$$

Example 2.3: A_{4} conjugacy classes
(1)
(12)(34), (13)(24), (14)(23)
(123),(124),(134),(234)
(132),(142),(143),(243)

3 Roots of unity

Example 3.1

$$
\zeta=\cos \theta+i \sin \theta \quad \text { and } \quad \zeta^{3}=1
$$

Definition 3.2: root of unity

The $n^{\text {th }}$ roots of unity are the n distinct $z \in \mathbb{C}$ s.t.

$$
z^{n}=1
$$

4 Maschke

Theorem 4.1: Maschke's Thm

Every representation:

$$
\rho: G \rightarrow G L_{n}(\mathbb{C})
$$

satisfies

$$
\rho \cong \rho_{1} \oplus \ldots \oplus \rho_{m<\infty}
$$

where ρ_{i} are irreducible representations of G

Example 4.2: what does \oplus mean?

Given:

$$
\begin{gathered}
\rho_{1}: G \rightarrow G L_{n}(\mathbb{C}) \\
\rho_{2}: G \rightarrow G L_{m}(\mathbb{C})
\end{gathered}
$$

We could define:

$$
\rho=\rho_{1} \oplus \rho_{2}: G \rightarrow G L_{n+m}(\mathbb{C})
$$

by

$$
\rho_{g}=\begin{array}{l|l}
\rho_{1}(g) & \\
\hline & \rho_{2}(g)
\end{array}
$$

Definition 4.3: decomposable

Let

$$
\rho: G \rightarrow G L_{n}(\mathbb{C})
$$

if

$$
\mathbb{C}^{n}=V_{1} \oplus V_{2}
$$

for two G-invariant subspaces, V_{1}, V_{2}, then

$$
\rho \cong \rho_{1} \oplus \rho_{2}
$$

where

$$
\rho_{i}=\left.\rho\right|_{v_{i}} \quad \text { a restriction to smaller domain }
$$

We say ρ is decomposable

