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1 Background

1.1 Topology

Definition 1.1.1. A topological space is locally connected at point x if ev-
eryneighborhood of x contains a connected open neighborhood.

2 Topologcial Groups

2.1 Introduction

Definition 2.1.1. A topological group is a group such that

1. he product p : G×G→ G, p(g, h) = gh, is a continuous map if G×G has
the product topology;

2. The map ι : G→ G, ι(g) = g−1, is continuous (hence, a homeomorphism,
as ι−1 = ι

)
.

Each element g ∈ G defines the following maps.

• left translation: Lg : G→ G,Lg(h) = gh;

• right translation: Rg : G→ G,Rg(h) = hg;

• conjugation: Cg : G→ G,Cg(h) = ghg−1.

2.2 Neighborhoods of Identity

An (open) neighborhood of x ∈ X, where X is a topological space, is an open
set U that cointains x.

Let G be a topological group, and 1 ∈ G is the identity. V (1) refers to the set
of all neighborhoods of 1.

Proposition 2.2.1 (Proposition 2.2). Let G be a t.g. (topological group), V =
V (1). Then we’ll have

1. (T1)for all u ∈ V, 1 ∈ u;

2. (T2)u, v ∈ V =⇒ u ∩ v ∈ V ;

3. (TG1) for all u ∈ V , there exists v ∈ V s.t. v2 ⊆ u;

4. (TG2) u ∈ V =⇒ u−1 ∈ V ;

5. (TG3) u ∈ V, g ∈ G =⇒ gug−1 ∈ V .

Definition 2.2.2. Let G be a group, not necessarily topological group. A
system of neighborhood of 1 ∈ G is a family of sets sastisfying (T1) to (TG3).
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Definition 2.2.3. Let X be a topological space and x ∈ X. A fundamental
system of neighborhoods of x is a family F of open sets containing x s.t. for all
open u that contains x, there exists v ∈ F s.t. v ⊆ u.

Theorem 2.2.4 (Proposition 2.5). Let G be an abstract group, V be a system
of neighborhoods of 1. There exists a unique topology on G making G into a
topological group and s.t. V is a fundamental system of neighborhoods of 1.

idea of proof.

Proposition 2.2.5. Let G be a topological group. TFAE

1. topology of G is a Hausdorff

2. {1} is closed in

3.
⋂
U∈V(1) U = {1}

2.3 Metrizable Groups

Definition 2.3.1. Let G be a topological group. G is metrizable if it has a
left-(or right-) invariatn distance which defines the tooplogy left-invariant for
all g ∈ G and d(gx, gy) = d(x, y) for all x, y ∈ G.

Theorem 2.3.2. A topological grouop G is metrizable iff it has a countable
system of neighborhoods of 1.

2.4 Homomorphisms

We need to talk about G→ H continuous homomorphisms.

Example 2.4.1. The determinant homomorphism det : GLn(R) → R∗ =
GL(1,R) is continuous.

Theorem 2.4.2. Let G,H be topological group. A group homomorphism φ :
G→ H is continuous iff φ is continuous at 1 ∈ G.

Proof. =⇒ is obvious. Let’s look at the other direction.

Note that φ ◦ Lg = Lφ(g) ◦ φ as maps G→ H because

(φ ◦ Lg)(g′) = φ(gg′) = φ(g)φ(g′) = (Lφ(g) ◦ φ)(g′).

Then
φ = Lφ(g) ◦ φ ◦ Lg−1

is continuous at g, as Lg−1 is continuous at g, φ continuous at 1, and Lφ(g)
continuous everywhere.

Theorem 2.4.3. A map φ : G→ H is a group homomorphism ( G,H are just
grouops) iff

gr(φ) := {(g, φ(g)) | g ∈ G} ⊆ G×H.
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Proposition 2.4.4. Let X and Y be topological spaces, such that Y is Haus-
dorff. A map φ : X → Y is continuous if and only if its graph gr(φ) is closed
and the projection p(x, φ(x)) = x is a homeomorphism.

Proof. Suppose φ is continuous. Then

gr(φ) = θ−1(∆y) w.r.t. θ : X × Y → Y × Y

is closed, since tehta is continuous and ∆y is closed.

Theorem 2.4.5. Suppose G,H are topological groups, H is Hausdorff. The
map G→ H is a continuous homomorphism iff gr(φ) is a closed subgroup and
p : gr(φ)→ G is a homeomorphism.

2.5 Subgroups

Let G be a topological group. H ⊆ G is a topological subgroup if H is a topo-
logical group w.r.t. the induced topology.

Proposition 2.5.1. Let G be a topological group. If H ⊆ G a subgroup, which
is open. Then H is also closed.

Proof. Consider

Y =
⋃

g∈G−H
gH.

Y is open, as it is a union of open sets. H is also closed, as G−Y = H. Hence,
H is closed.

Proposition 2.5.2. G a topological group, H ⊆ G a subgroup. Then H is also
a subgroup of G.

Proof. Note that A ⊆ X (subset of a topological space), x ∈ A iff for all open
U that contains x, U ∩A 6= ∅. Then we check the followings.

1. H is closed under m : G×G→ G.

2.6 Connected Components of Topological Groups

A connected space cannot be written as the union of two disjoint open sets.

A connected component of a point x ∈ X is the union of all connected sets
containing x, which is also the maximal connected set containing x.

A connected component of X is a maximal connected subset.

If A ⊆ X is connected, then the closure A is connected. Thus, every connected
component is closed.

Let G be a topological group, G0 is the connected component of 1 ∈ G.

Proposition 2.6.1. G0 is a closed normal subgroup of G. The connected com-
ponents of G are exactly gG0 for g ∈ G.
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A neighborhood N of x ∈ X is a subset N ⊆ X, x ∈ N and there exists an open
U ⊆ X s.t x ∈ U ⊆ N .

A space is locally connected if for every open neighborhood of every point con-
tains a connected open neighborhood.

Proposition 2.6.2. If G is locally conencted, then G0 is open.

Proposition 2.6.3. If G connected, U ∈ V(1), then G = ∪n≥1Un.

2.7 Group Action

Suppose G a group, X a set.

Definition 2.7.1. A left action of a group G on a set X is a function that
associates to g ∈ G a map a(g) : X → X which satisfies the properties: 1.
a(1) = idX , that is, a(1)(x) = x, for every x ∈ X; 2. a(gh) = a(g) ◦ a(h).

Definition 2.7.2. Let φx : G ×X → X,φy : G × Y → Y . A map f : X → Y
is G-equivariant if

φy(g, f(x)) = f(φx(g, x)).

Same stroy for topological groups.

Definition 2.7.3. Let G be a topological group, X a topological space, an
action G on X should be continuous. In other words, G acts on X by homeo-
morphisms φg.

Action is transitive if X = Gx for some x ∈ X. We define the orbit of x to be
Gx = {gx | g ∈ G}. A stabilizer or isotropy subgroup of x is Gx = {g ∈ G |
gx = x}.

An action is an effective action or faithful if gx = x, ∀x ∈ X =⇒ g = 1,
equivalently, ∩x∈XGx = {1}.

Proposition 2.7.4.

G/Gx → X where gGx 7→ gx.

This map is equivariant.

Proposition 2.7.5. Suppose that the action of G on X is continuous and that
X is a Hausdorff space. Then, any isotropy subgroup Gx, x ∈ X, is closed.

2.8 Homogeneous Spaces

Let G be a topological group.

Definition 2.8.1. A homogeneous G-space is just G/H for a subgroup H of G.

Definition 2.8.2. A topological space X without regards to group is homo-
geneous if for all x, y ∈ X, there exists a homeomorphism φ : X → X s.t.
φ(x) = y.
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Topology on G/H is that of a quotient: π : G → G/H. In other words,
U ⊆ G/H open if π−1(U) ⊆ G open.

Note: action of G on G/H is continuous:

G×G/H → G/H where (x, gH) 7→ xgH.

Proposition 2.8.3. We have the following facts.

1. G/H is a homogeneous space in the sense of topology.

2. π : G→ G/H is an open map (it takes open sets to open sets).

3. H compact implies that π is a closed map.

4. G/H is Hausdorff iff H is closed.

5. G/H discrete iff H open. (HW2)

6. If G is compact, G/H discrete and finite iff H is open.

7. H CG implies G/H is a topological group.

8. H := {1}. THen H is a normal subgroup of G, and G/H is Hausdorff
topological group.

Proof of 1. Consider left translation

Lx : gH 7→ xgH.

This is a homeomorphism since Lx−1 is an inverse and both are continuous.

Proof of 2. We need to show that π−1π(U) is open. (Omitted, just do image
preimage and write it as union of right cosets).

Proof of 3. Take F ⊆ G closed, if H is a compact subset, then FH ⊆ G is
closed. (From a proposition from textbook).

Notice that π(F ) closed iff π−1π(F ) closed, and the latter equals to FH.

Proof of 4. We first show =⇒ . Note that H = π−1(H), which is a point of
G/H, so it’s closed. Thus H is closed.

Then we show ⇐. Consider the homeomorphism

f : G/H ×G/H → G×G/H ×H where (g1H, g2H) 7→ (g1, g2)H ×H.

Denote ∆ = {(gH, gH)}. Then f(∆) = {(g, g)H ×H} is closed iff π−1G×Gf(∆)

is closed, which equals to {(g1, g2) | g1H = g2H} = {(g1, g2) | g−11 g2 ∈ H}.

Let G be a topological group, H ⊆ G a subgroup.

Proposition 2.8.4. If H and G/H are compact, then so is G.
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Proof.
π : G→ G/H

is a perfect map, i.e., a continuous subjective closed map with compact fibers
π−1(x),∀x ∈ G/H.

Proposition 2.8.5. If G/H and H are connected, then so is G.

Proof. Suppose G is not connected, then there exists A
⊔
B = G, A,B 6= ∅

open, disjoin ⊆ G. Then π(A), π(B) 6= ∅, open because π is always open,
π(A) ∪ π(B) = G/H, which is connected. Therefore π(A) ∩ π(B) 6= ∅. Thus
there exsits gH ∈ G/H s.t. gH ∩A 6= ∅ and gH ∩B 6= ∅.

2.9 Orbits and Homogeneous Spaces

Homogeneous space G/Gx, we hav ea bijection:

G/Gx → G · x where gGx 7→ gx.

Proposition 2.9.1. Let G ×X → X be a continuous and transitive action of
G on X. Fix x ∈ X and consider the bijection

ξx : G/Gx → X given by ξx(gGX) = gx.

Then ξx is continuous with respect to the quotient topology in G/Gx.

Proposition 2.9.2. Let G × X → X be a topological transitive group action.
Suppose G is locally compact and spearable (i.e., has a countable dense subset)
and X is Hausdorff and locally compact, Then

ξx : G/Gx → X = G · x ∀x ∈ X

is a homeomorphism.

2.10 Examples

We have
O(N) = {g ∈ GL(n,R) | ggT = In(det g = 1)}.

O(n) acts on Rn with orbits being Sn−1r − {x ∈ Rn | |x| = r}, r ≥ 0.

Induction implies that O(n), SO(n) are compact, SO(n) connected.

Also SL(n,R) is connected, as it has for n > −2 has 2 orbits on Rn : {0},Rn −
{0}. Also SL(n,C) is connected.

Consider unitary groups

U(n) = {g ∈ GL(n,C) | gg−T − In(det g = 1)}.

GL(n,F) acts on Pn−1, which is the set of lines through 0 in Fn.

Grk(n,F) is the set of k-dimensional subspaces of Fn, which is the quotient of
the set of n× k-matrices of rank k by GL(k,F) acting on the right.
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3 Lie Group

3.1 Basics

Definition 3.1.1. A Lie group G is a group and a manifold such that

m : G×G→ G

is smooth.

The composition of two smooth maps is smooth.

Proposition 3.1.2. The inverse map ι : G→ G is a diffeomorphism with

dιg = −(dLg−1)1 ◦ (dRg−1)g.

Particularly, ι1 = − id.

3.2 Tangent Bundle to a Manifold

A fiber bundle is a structure (E,B, π, F ), where E,B, and F are topological
spaces and π : E → B is a continuous surjection satisfying a local triviality
condition outlined below. The space B is called the base space of the bundle,
E the total space, and F the fiber. The map π is called the projection map (or
bundle projection). We shall assume in what follows that the base space B is
connected.

We require that for every x ∈ B, there is an open neighborhood U ⊆ B of x
(which will be called a trivializing neighborhood) such that there is a homeo-
morphism ϕ : π−1(U)→ U × F (where π−1(U) is given the subspace topology,
and U×F is the product space) in such a way that π agrees with the projection
onto the first factor. That is, the following diagram should commute:

ADD THIS!

Denote the tangent bundle

TM = ∪x∈MTxM TxM = {m(t) | m(0) = x}/ ∼ .

3.3 Lie Groups

Let TG be the tangent bundle to a Lie group G. We define

d(Lg)h : ThG→ TghG where h′(t) 7→ (gh)′(t).

Notice that then
d(Lg)1 : T1G ' TgG.

Moreover,
G× T1G ' TG where (g, v) 7→ (g, d(Lg)1v).

Thus, TG is trivial as a vector bundle for a Lie group G. i.e. G is parallelizable.
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3.4 Lie Algebra

Proposition 3.4.1.
[φ ∗X,φ ∗ Y ] = φ ∗ ([X,Y ]).

Definition 3.4.2. Let G be a Lie group. A vector field X on G is said to be

• right invariant if, for every g ∈ G, (Rg)∗X = X. In detail,

d (Rg)h (X(h)) = X(hg)

for every g, h ∈ G;

• left invariant if, for every g ∈ G, (Lg)∗X = X, that is,

d (Lg)h (X(h)) = X(gh).

Definition 3.4.3. We define Maurer-Cartan forms, which are differential 1forms
on G with values in T1G. They are defined by right or left translations by

ωrg(v) = d
(
Rg−1

)
g

(v) and ωlg(v) = d
(
Lg−1

)
g

(v)

for g ∈ G and v ∈ TgG.

Proposition 3.4.4. If X ∈ V ect(G) is right-invariant, then ωr(X) = X(1), the
constant T1G-valued function. Similarly, if X is left-invariant, then ωl(X) =
X(1).

Definition 3.4.5. We define the set of right invariant fields as

Invr = ∩g∈Gker
(
(Rg)∗ − Idvect(G)

)
⊆ V ect(G).

Theorem 3.4.6. Let Invr ∼= T1G ∼= Inve

Definition 3.4.7. g = (Invr, [, ]) is the Lie algebra of a Lie group G.

Proposition 3.4.8. This bracket gives the following bracket on T1G:

A ∈ T1G→ Ar(g) = d(Rg)1A.

Moreover
[A,B] := [A,B]r = [Ar, Br](1).

Proposition 3.4.9. Let A,B ∈ T1G. Then, [A,B]r = −[A,B]l.

[A,B] = −[A,B]e = BA−AB.
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3.5 Exponential Map

Remarks on flows on manifolds.

Let X be a vector field on manifold M , X ∈ C∞(M,TM). A flow φxt defined
by φxt (x) = x(t), t ∈ (−ε, ε), and dx

dt = X(x), x(0) = x.

Another notation is Xt = φxt .

WTS
Xs+t = Xs ◦Xt = Xt ◦Xs.

Take X ∈ g = Invr right invariant vector field

Then Xt(g) the flow equals to g(t) and is given by

dg

dt
= X(g), g(0) = g.

For g ∈ G, g(t) : (−ε, ε)→ G.

Lemma 3.5.1. For X ∈ Invr, we have

Xt(gh) = Xt(g)h ∀g, h ∈ G.

Theorem 3.5.2. A right-invariant vector field X is complete, i.e., defined for
all t ∈ R.

G a lie group, g = T1G its lie algebra.

Definition 3.5.3. The exponential map

exp : g→ G

is defined byX ∈ g generates the right invariant vector fieldXr(g) = d(Rg)1X, g ∈
G.

Then we create a flow, denoted by Xr
t = g(t), for dg(t)

gt = Xr(g(t)), g(0) = g,

which gives that Xr
t (1) |t=1= exp(X).

Proposition 3.5.4. By doing the same procedure using left-invariant vector
field X l gives the same result:

X l
t(1) |t=1= Xr

t (1) |t=1= exp(X).

Moreover,
X l
t(1) = Xr

t (1) ∀t ∈ R.

Proof. Denote g(t0) = Xr
t (1), g(0) = 1. It’s sufficient to show that dg

dt = X l(g).
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We know that

dg

dt
=

d

dt
(Xr

t (1)) =
d

ds

(
Xr
s+t(1)

)
|s=0

=
d

ds
(Xr

t (Xr
s (1))) |s=0

=
d

ds
(Xr

t (1)Xr
s (1)) |s=0

=
d

ds

(
LXr

t (1)
Xr
s (1)

)
|s=0

= d(LXr
t (1)

)1
d

ds
(Xr

s (1)) |s=0 chain rule

= d(LXr
t (1)

)1X
r(1)

= d(LXr
t (1)

)1X

= X l(Xr
t (1))

= X l(g(t))

We have
Xt(1) : (R, t)→ G.

a homomorphism, sometimes we call it a one-parametric subgroup of G gener-
ated by a right invariant vector field Xr.

Q: What is Xr
t (1) and X l

t(1) via exp?

A: Suppose Y a vector field on M . Suppose we run a corresponding flow Yt on
M . Let a ∈ R, then (aY )t = Yat whenever flow Yat and Yt are defined.

(tY )s|s=1 = Yt.

APplying this to M = G, Y = Xr at g = 1, tXr = (tX)r, we have

exp(tX) = (tX)rs(1)|s=1 = (tXr)s(1)|s=1 = Xr
t (1).

Then
Xr
t (1) = exp(tX) X l

t(1) = exp(tX).

From office hour: (φ∗X)(y) = (dφ)φ−1(y)X(φ−1(y)) pushforward

3.6 Exponential Map Formulas

One formula is that

exp((s+ t)X) = exp(sX) exp(tX) = exp(tX) exp(sX), ∀x, t ∈ R, x ∈ g.

This implies that for all X,

{exp(tX) | t ∈ R}

is an abelian subgroup of G.
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Take X ∈ g, Xr ∈ Invr, g ∈ g, we have

Xr
t (g) = Xr

t (1)g because Xr
t (gh) = Xr

t (g) = h.

This implies that

Xr
t (g) = Xr

t (1)g = exp(tX)g, similarly X l
t(g) = g exp(tX).

We also have

1. exp(0) = 1;

2. exp(nX) = exp(X)n for all n ∈ Z;

3. exp(X)−1 = exp(−X).

Note that g ∼= RN , so Tyg = g for all y ∈ g.

Proposition 3.6.1. exp : g→ G is smooth, and

d(exp)0 : T0g→ T1G where X 7→ X.

In other words, d(exp)0 = idg.

Proof. exp(X) is smooth because Xr(g) = d(Rg)1X depends smoothly on X.
Then flow Xr

t (g) depends smoothly on Xr. Thus specialization of Xr
t (g) at

g = 1, t = 1 is also smooth as a function of X. Thus

exp(X) = Xr(1)|t=1

is smooth.

Now let’s compute the differential.

d(exp)0(X) =
d

dt
(exp(0 + tX)) |t=0

=
d

dt
(Xr

t (1))t=0

= Xr(1)

= X

By inverse function theorem, exp : g→ G is a diffeomorphism locally near 0 ∈ g,
i.e. there is an open neighborhood U ⊆ g of 0 and an open neighborhood V ⊆ G
of 1 such that

exp |U : U → V

is a diffeo-morphism.

Theorem 3.6.2. If G is connected, then for all g ∈ G, there exists x1, . . . , xn ∈
g such that g = exp(x1) · · · exp(xn).

Proof. Let G be a connected topological group, V any open neighborhood of 1.
Then G = ∪n≥1V n. For all g ∈ G, there exists n such that g ∈ V n. In other
words, g = v1 · · · vn where vi ∈ V .

Take V from the previous remark about exp a locally diffeomorphism locally
near 0, we have vi = exp(xi) for some xi ∈ U .
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3.7 Lie Algebras and Lie Group Homomorphisms

Let G,H be Lie groups. A Lie group homomorphism φ : G → H is a smooth
map which is a group homomorphism.

We claim that for a group homomorphism φ : G→ H. For φ to be a Lie group
homomorphism, it’s enough to check the differentiability just at g = 1.

Notice that
φ = Rφ(g) ◦ φ ◦Rg−1 .

For h close to g in G, we have

φ(h) = (Rφ(g) ◦ φ)(hg−1).

Therefore, (dφ)1 exists implies d(Rφ(g) ◦ φ)1 exists, and then (dφ)g exists.

Proposition 3.7.1 (Lemma 5.14). Let G and H be Lie groups with Lie algebras
g and h, respectively. Let φ : G → H be a differentiable homomorphism and
take X ∈ g. Then, for every g ∈ G, it holds

dφg (Xr(g)) = Y r(φ(g)) dφg
(
X l(g)

)
= Y l(φ(g)),

where Y = dφ1(X).

This proposition shows that Xr and Y r (same with X l and Y l) are φ-related ,
i.e. dφx(X(x)) = Y (φ(x)).

Proposition 3.7.2. Let G and H be Lie groups with Lie algebras g and h,
respectively. Let φ : G→ H be a differentiable homomorphism and take X ∈ g.
Then,

φ(exp(X)) = exp (dφ1(X)) .

Proposition 3.7.3 (Proposition A.2). Let φ : M → N be a differentiable map
and X1, X2 vector fields on M . Suppose that Y1 and Y2 are vector fields on N
that are φ-related to X1 and X2, respectively. Then [X1, X2] and [Y1, Y2] are
φ-related.

Proposition 3.7.4 (Proposition 5.16). Let G and H be Lie groups with Lie
algebras g and h, respectively. Let φ : G→ H be a differentiable homomorphism.
Then, dφ1 : g→ h is a homomorphism, that is,

dφ1[X,Y ] = [dφ1X, dφ1Y ]

with left or right invariant brackets.

Example 3.7.5. Consider

det : GL(n,R)→ R× = GL(1,R).

Then we know
d(det)1 : gl(n,R)→ R.

Proposition 3.7.6. From the above example, we have

d(det)1A = trA.
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Proof. We have G = GL(n,R), A ∈ T1G. Consider

α(t) : (−ε, ε)→ G where α(0) = 1, α′(0) = A.

Then

d(det)1A =
d

dt
(In + tA)|t=0

=
d

dt

(
tnχ−A

(
1

t

))
|t=0

χA(λ) = det(λIn −A)

= (λ− λ1) · · · (λ− λn)

= λn − (trA)λn−1 + · · ·+ (−1)n detA

=
d

dt
(1 + t(trA) + · · ·+ tn detA) |t=0

= trA

Remark that

ker det = {g ∈ GL(n,R) | det g = 1} = SL(n,R).

3.8 The Adjoint Representation

Definition 3.8.1. A representation of a Lie group G on a finite vector space
V is a Lie group homomorphism

ρ : G→ GL(V ) ∼= GL(n,R).

Example 3.8.2 (Martin Page 105). Let G = Gl(n,R). Its canonical represen-
tation on Rn is the identity map. The corresponding infinitesimal representation
is also the identity, that is, it associates with an element of gl(n,R) the corre-
sponding linear map of Rn. This statement follows from

d

dt

(
etA
)
|t=0

= A

Example 3.8.3 (Martin Page 106). Again, let G = Gl(n,R) and consider the
tensor product

Tk =

k⊗
Rn = Rn ⊗ · · · ⊗ Rn.

For g ∈ G, define the linear map ρk(g) : Tk → Tk in such a way that, for the
tensor products v1 ⊗ · · · ⊗ vk, v1, . . . , vk ∈ Rn, it holds

ρk(g) (v1 ⊗ · · · ⊗ vk) = gv1 ⊗ · · · ⊗ gvk.

Map ρk is a representation of Gl(n,R). Its infinitesimal representation is com-
puted with the derivative

d

dt

(
etAv1 ⊗ · · · ⊗ etAvk

)
|t=0

=

k∑
i=1

v1 ⊗ · · · ⊗Avi ⊗ · · · ⊗ vk

14



The right hand side in this equality defines the linear map (dρk)1 (A). The
tensor representation can be restricted to any linear group G ⊂ Gl(n,R).

Analogous representations are obtained for the k-th exterior product ∧kRn. The
expressions for ρk(g) and (dρk)1 are the same, replacing the tensor product ⊗
by the exterior product ∧.

Definition 3.8.4. The adjoint representation Ad : G→ Gl(g), of G on its Lie
algebra g is defined by

Ad(g) = d (Cg)1 = d
(
Lg ◦Rg−1

)
1

= d
(
Rg−1 ◦ Lg

)
1

= (dLg)g−1 ◦
(
dRg−1

)
1

=
(
dRg−1

)
g
◦ (dLg)1 .

The representation Ad is differentiable.

Recall
d(Ad)1 = ad : g→ gl(g) where X 7→ [X,−].

Corollary 3.8.5 (Proposition 5.19). Let G be a Lie group with Lie algebra g,
with bracket given by left invariant vector fields. Then, d(Ad)1(X) = adl(X)
for every X ∈ g and

Ad(expX) = exp (adl(X))

Proposition 3.8.6. If G is abelian, then g is abelian. If G = G0, then g abelian
which implies G is abelian.

Proposition 3.8.7. We have ker Ad = Ad−1 ⊆ G (closed subgroup). And
ker Ad = Z(G0) (centralizer of G0).

3.9 Haar Measure on Lie Group

Definition 3.9.1. A left(right) Haar measure is a measure invariant under left
(right) translations.

ω ∈ Ωn(G)

invariant under left translation gives a Haar measure. It means that

L∗g(ω) = ω ∀g ∈ G.

Example 3.9.2. Let G = GL(n,R). The Haar measure would be

1

(det g)n
∧ dgij g ∈ GL(n,R).

We have ω is left-invariant iff for all g, h,

((Lg)
∗ω)(h) = ω(h) i.e. (Lg−1)∗gω(1) = ω(g).
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4 Lie’s Fundamental Theorem

4.1

Theorem 4.1.1 (Lie’s Third and Second Theorem). The functor from simply
connected Lie group to Lie algebra establishes an equivalence of categories. (it’s
surjective)

Proposition 4.1.2. For every finite dimensional Lie algebra g, there exists a
Lie group with g as its Lie algebra.

In mathematics, the Baker-Campbell-Hausdorff formula is the solution for Z to
the equation

eXeY = eZ

for possibly noncommutative X and Y in the Lie algebra of a Lie group. There
are various ways of writing the formula, but all ultimately yield an expressio for
Z in Lie algebraic terms, that is, as a formal series (not necessarily convergent)
in X and Y and iterated commutators thereof. The first few terms of this series
are:

Z = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + · · ·

4.2 Baker Campbell Hausdorff Theorem

Let R〈x, y〉 be the free associated algebra on x, y, also could be written as the
tensor algebra of V = Rx⊕ Ry, written as T (V ) = ⊕n≥0V ⊕n.

Given A associated R-algebra. Denote A[[s, t]] the algebra of formal power series
in s, t(st = ts), could be written as

A[[s, t]] = {a00 + a10s+ a01t+ a11st+ a12st
2 + a21s

2t+ · · · | aij ∈ A}

A = lim
←
A[s, t]/(s, t)n.

Define
`(xs, yt) = log(exp(xs) exp(yt)) = log(exseyt),

where

exs = 1 +
xs

1!
+
x2s2

2!
+
x3s3

3!
+ · · ·

and

log(1 + z) = z − z2

2
+
z3

3
− · · · .

z ∈ (s, t) ⊆ R < x, y > [[s, t]]. And log(α) = log(a + (α − 1)), provided
α− 1 ∈ (s, t).

Theorem 4.2.1 (BCH). 1. For the formal power series `(xs, yt), we have

`(xs, yt) = xs+ yt+
1

2
[x, y]st+

1

12
[x, [x, y]]s2t+

1

12
[y, [y, x]]st2 + · · ·

with all the coefficients in power series `(xs, yt) given by Lie-bracket poly-
nomials, where [x, y] := xy − yx ∈ R〈x, y〉. The coefficients may be ob-
tained by a recursive formula.
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2. Given a Lie group G, there exists u′ ⊆ u ⊆ g and V ⊆ G (open neighbor-
hoods of 0 and 1, resp.) such that exp(g) = G and log(V ) = u. And u′ is
such that for all X,Y ∈ u′, we have exp(X) exp(Y ) ∈ V , which allows us
to apply log:

C(X,Y ) := log(exp(X) exp(Y )).

Then the series `(X,Y ) as a series in g, converges to C(X,Y ).

Corollary 4.2.2. A smooth Lie group G is real analytic.

4.3 Universal Enveloping Algebra

Let V be a vector space with k = R,C,Qp or any field of

Let T (V ) be the free algebra generated by V . Universal property iff Functor
T : V ect → Alg from vector space to associated algebras is a left forgetful
functor:

F : Alg → V ect A 7→ F (A) = A.

That is a natural bijection

HomAlg(T (V ), A) ∼= HomV ect(V,A).

There exsits a left adjoint of Alg → LieAlg which takes A to g(A) = A, denoted
by U : LieAlg → Alg where g 7→ Ug, which is called the universal enveloping
algebra.

Definition 4.3.1. Ug = T (g)/(xy − yx− [x, y]) with x, y ∈ g.

Proposition 4.3.2. This is a left-adjoint, indeed.

4.4 Completing the Proof of PBW Theorem

Given a filtered vector space V , we define grV
def
=
⊕

n≥0 grn V , where grn V
def
=

V≤n/V≤(n−1).

A Lie algebra g is abelian if the bracket is identically 0 . If g is abelian, then
Ug = Sg, where SV is the symmetric algebra generated by the vector space V
(so that S is left-adjoint to Forget: CoMALG → VECT).

Theorem 4.4.1 (Poincaré-Birkhoff-Witt). The map Sg→ grUg is an isomor-
phism of algebras.

4.5 Bialgebra

Definition 4.5.1. An element x of a coalgebra B is called primitive if δ(x) =
x⊗ 1 + 1⊗ x. Denote prim(B) as the set of all primitive x ∈ B.

Proposition 4.5.2. There is a bialgebra structure on Ug for a Lie algebra g
such that prim(Ug) = g.
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4.6 Universal algebra as Differential Operators

Definition 4.6.1 (Grothendieck). Let X be a space and S a sheaf of functions
on X. We define the sheaf D of Grothendieck differential operators inductively.
Given open U ⊆ X, we define D ≤ 0(U) = S (U), and

D≤n(U) = {x : S (U)→ S (U) s.t. [x, f ] ∈ D≤(n−1)(U)∀f ∈ S (U)
}
,

where S (U) y S (U) by left-multiplication. Then D(U) =
⋃
n≥0 D≤n(U) is a

filtered sheaf; we say that x ∈ D≤n(U) is an nth-order differential operator on
U .

D≤1 is a subsheaf, a sheaf of Lie algebras.

By Jacobi identity we have

[D≤m,D≤n] ⊆ Dm+n−1.

We have

D≤1(U) = C∞M (U)⊕ V ect(U) = {D ∈ D≤1(U) | D(1) = 0}.

D is generated as a sheaf of associated algebras by C∞M and TM .

Proposition 4.6.2. Let G be a Lie group, and D(G)G the subalgebra of left-
invariant differential operators on G. The natural map Ug→ D(G)G generated
by the identification of g with leftinvariant vector fields is an isomorphism of
algebras.

Lemma 4.6.3. Suppose for some u ∈ Ug = D(G)G, we have (uf)(1) = 0 for
each f ∈ C∞G,1 stalk of germs of functions C∞G at 1. Then u = 0.

Proof. Let’s show u = 0 as a differential operator. For all g ∈ G,

(uf)(g) = (L∗g(uf))(1) = (u(L∗gf))(1) = 0.

Thus uf = 0 and u = 0.

Proposition 4.6.4. Extend ∆ to

∆ : Ug[[s]]→ (Ug⊗ Ug)[[s]].

then ∆ is an s-adic-continuous algebra homomorphism. Then u(s) ∈ Ug[[s]] is
primitive iff eu(s) is group-like, that is

∆(eu(s)) = eu(s) ⊗ eu(s),

.
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4.7 Proof of BCH

Theorem 4.7.1 (BCH Formula). 1. Recall R〈x, y〉 = T (Rx⊕Ry) = ULie(x, y),
the free Lie algebra on x, y. First define a series b(sx, ty) ∈ R〈x, y〉[[s, t]]
by eb(sx,ty) = esxety. Then b(sx, ty) ∈ Lie(x, y)[[s, t]], i.e., b(sx, ty) =∑
p,q≥0 bpq(x, y)sptq with bpq(x, y) ∈ Lie(x, y) and

b(sx, ty) = xs+ ty +
1

2
[x, y]st+

1

12
[x, [x, y]]s2t+

1

12
[y, [y, x]]st2 + · · ·

2. Suppose G is a real (or complex) analytic Lie group (will be true for C∞-
Lie groups, see San Martin), then there exists open neighborhoods 0 ∈ U ⊆
g and 1 ∈ V ⊆ G such that

exp : U → V and log : V → U

establish a diffeomorphism and b(X,Y ), as a series
∑
bp,q(X,Y ) in g

converges on U to log(exp(X) exp(Y )).

Lemma 4.7.2. For all X ∈ g, g ∈ G, s ∈ R, and f a real analytic function f
on G, we have (

esX
e

f
)

(g) = f(g exp(sX)).

4.8 Universal Covering Group

Theorem 4.8.1. Given G connected Lie group, G̃ its universal cover as a topo-
logical space, p : G̃→ G.

1. Pick 1̃ ∈ G̃ such that p(1̃) = 1. Then G̃ has a unique structure of a
Lie group such p is smooth covering and a Lie group homomorphism and
1̃ ∈ G̃ is the identity.

2. G̃→ G induces an isomorphism g̃→ g.

3. Adjunction
HomLieGrp(G̃,H) ∼= HomLieAlg(g, h),

where H is a Lie group with Lie algebra h.

Corollary 4.8.2. For all finite dimensional g Lie algebra, there exists a simply
connected Lie group with Lie algebra g.

5 Classification

5.1 Lie groups
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