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Abstract

This note is written from the course Commutative Algebra and Homo-
logical Algebra taught by Prof. Tyler Lawson in University of Minnesota
Twin Cities. This note is not guaranteed to be correct and is meant to
be used as a dictionary.
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1 Intro

Theorem 1.0.1. radical ideal is generated by a polynomial f with no multiple
roots.
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Suppose J ⊂ C[x1, . . . , xn] is an ideal. Then I(Z(J)) = rad(J) = {f | fn ⊂ J}

Definition 1.0.2. radical ideal is generated by a polynomial f with no multiple
roots. cokernel: take the image of f and mod out by image of f .

1.1 Modules

Let R be a commutative ring. An R-module M is an abelian group (+) with a
map R×M →M written (r,m) 7→ rm. Satisfying

1. associativity: r(sm) = (rs)m for all r, s ∈ R,m ∈M .

2. distributivity: r(m + m′) = rm + rm′ and (r + r′)m = rm + r′m for all
r, r′ ∈ R,m,m′ ∈M .

3. unitality: 1m = m for all m ∈M .

Several things you could derive from the definition: 0m = 0, (−1)m = −m, etc.

Example 1.1.1. Let R = k[x]. A k[x]-module is

• a k-vector space M

• with a map xM →M , where m 7→ xm, a k linear transformation.

Example 1.1.2. What is an R-submodule of R? It’s

1. J ⊆ R;

2. closed under addition, 0, negatives;

3. for any r ∈ R, j ∈ J, r, j ∈ J .

an ideal.

Definition 1.1.3. Let M be an R-module, N a sbugroup of M . N is a sub-
module if for any n ∈ N and r ∈ R, the product rn is in N .

Definition 1.1.4. If M is an R-module, we shall write annM for the annihi-
lator of M ; that is,

annM = {r ∈ R | rM = 0},

which is an ideal.

Definition 1.1.5. Let I ⊆ R an ideal, M an R-module. We denote

IM =
{∑

aimi | ai ∈ I,mi ∈M
}
⊆M

the smallest R-submodule of M containing all elements of the form am, where
a ∈ I,m ∈M .

Example 1.1.6. Suppose M is an R-module. FOr N,N ′ ⊆M submodules,

[N : N ′] ⊆ R x ∈ [N : N ′] ⇐⇒ xN ′ ⊆ N.

For N a submodule, I an ideal

[N : I] ⊆M. y ∈ [N : I] ⇐⇒ Iy ⊆ N.
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The point of having the above is to generalize the annihilator.

Example 1.1.7. ann M = [O : M ].

Some operations we could do. Given a sequence of modules M1,M2, . . ..

Definition 1.1.8. We denote∏
i∈I

Mi = {(m1,m2, . . .) | mi ∈Mi} .

∏
Mi is an R-module with componentwise addition and scalar multiplication.

Note that ⊕Mi ⊆
∏
Mi, a sub-R-module.

Also, ⊕Mi = {(mi)i∈I | only finitely many mi are zero }

Suppose we have an R-module homomorphism

f : M → N.

We could construct 3 modules: ker(f) ⊆M, Im(f) ⊆ N, coker(f) = N/Im(f)

Definition 1.1.9. Suppose we have R-module homomorphism

f : m→ N g : N → P.

This is exact if Im f = ker g.

Definition 1.1.10. If we have a sequence of maps

· · · →M1 →M2 →M3 → · · · .

then we say it’s exact iff each 2-term sequence is exact.

Saying 0→M → N is exact is saying f is injective. And M → N → 0 is exact
is saying f is surjective.

Definition 1.1.11. A short exact sequence is an exact sequence

0→M → N → P → 0 f : M → N, g : N → P.

This tells us that

1. M iso to Im(f)

2. P iso to N/ker(g)

3. ker(g) = Im(f), P iso coker(f)

Definition 1.1.12. A free R-module is an R-module isomorphic to ⊕i∈IR. In
particular, Rn are the finitely generated free modules.

Definition 1.1.13. A moduleM is finitely generated if there existsm1, . . . ,mn ∈
M such that every element of M is of the form

∑n
i=1 aimi for some ai ∈ R.

Definition 1.1.14. A module M if finitely presented if there exists an exact
sequence

Rn → Rm →M → 0.
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2 Localization

2.1 Fractions

Suppose R is a ring, U ⊆ R is a subset thatis closed under multiplication, and
contains the unit 1 ∈ R.

Definition 2.1.1. We can form the localization R[U−1], whose elements are

{(r, s) | r ∈ R, s ∈ U} .

We also put an equivalence relation on the elements.

(r, s) ≡ (r′, s′) ⇐⇒ ∃u, v ∈ U, (ur, us) = (vr′, vs′).

Note that the equivalence relation is different from cross-multication as what
we do in fractions.

Example 2.1.2. Let R = Z, U = {1, 2, 4, 6, 16, . . .}. Then

R[U−1] = Z
[

1

2

]
=

{
p

q
| p ∈ Z, q = 2k

}
.

Definition 2.1.3. In R[U−1], we have a ring.

(r, s) + (r′, s′) = (rs′ + r′s, ss′)

(r, s) · (r′, s′) = (rr′, ss′)

0 = (0, 1)

1 = (1, 1)

Example 2.1.4. Let R = Z/6, U = {1, 3}. Then localization is smaller:

R[U−1] = Z/2.

Example 2.1.5. Let R = C[x], U =
{

1, x, x2, x3, . . .
}

. Then

R[U−1] = C[x, x−1] = {f(x)/xn|f(x) poly , n ∈ N} =

{∑
n∈Z

anx
n | an ∈ C

}
.

Note that in the summation there should only be finitely many n. The ring is
also called Laurent polynomials.

This ring is isomorphic to
C[x, y]/(yx− 1).

Note that there is always a ring homomorphism

φ : R→ R[U−1] φ(r) =
r

1
.
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Example 2.1.6. R = C[x1, . . . , xn], U = R − {0}. Note U is closed under
multiplication because R is an integral domain.

R[U−1] = {f(~x)/g(~x) | f, g ∈ C[x1, . . . , xn], g 6= 0} .

Proposition 2.1.7. The theory of ideals in R[U−1] is closely related to the
theory of ideals in R. Given an ideal J in R, we could have J · R[U−1], which
is an ideal in R[U−1].

The map from ideals of R[U−1] to ideals of R is an injection. They are sort of
“ideals that don’t meet the set U”.

An ieal J is of the form φ−1(L) iff for any a, b s.t. a ∈ R, b ∈ U , ab ∈ J =⇒
a ∈ J .

There is a correspondance between prime ideals of R[U−1] and prime ideals of
R that don’t contain any elements of U .

Example 2.1.8. prime ideals of Q; prime ideals of Z that don’t contain any
elements of the set {1, 2, 3, 4, 5, . . .}; {(0)}.

Definition 2.1.9. Supose R is a ring. P ⊆ R is a prime ideal. We define RP
to be the localization of the set U = R− P .

Note that U is closed under multiplication because P is prime.

Also, RP has one maximal ideal: PRP .

There is a correspondance between prime ideals of RP ; prime ideals of R that
don’t contain any elements of U ; prime ideals of R contained in P.

Example 2.1.10.

Z(2) =
{ n
m
| m odd

}
.

This has 2 ideals: (0), (2).

Definition 2.1.11. A ring R is local if it has a unique maximal ideal.

RP is always local if P is prime.

If R is a ring, M is an R-module, U ⊆ R is a subset closed under multiplication
and 1. We can construct

M [U−1] =
{m
s
| m ∈M, s ∈ U

}
.

M [U−1] is an abelian group and a module on R[U−1].

Example 2.1.12. R = Z, U = {1, 3, 9, 27, . . .} ,M = Z/10. Check that M [U−1] ∼=
{0}.

2.2 Hom

For R-modules M,N . There is a new R-module HomR(M,N)

HomR(M,N) ⊆ {f : M → N} .

Functions that are
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1. group homomorphisms

2. R-linear: f(rx) = rf(x)

Definition 2.2.1. HomR(M,N) is an R-module in the following way.

• f + g : (f + g)(m) = f(m) + g(m)

• rf : (rf)(m) = rf(m)

There are some properties of Hom.

1. HomR(R,N) ∼= N , where f 7→ f(1), n ∈ N 7→ f(r) = rn. Basically the
same as picking an element from N .

2.
HomR (⊕i∈IMi, N) ∼=

∏
i∈I

HomR(Mi, N).

The RHS is choosing for each i ∈ I, a homomorphism Mi → N . There’s
also

HomR(M,
∏

Ni) ∼=
∏
i∈I

HomR(M,Ni).

3. If I have R-module homomorphisms

α : M →M ′ β : N → N ′.

I get a map

HomR(α, β) : HomR(M ′, N)→ HomR(M,N ′) where f 7→ βfα.

Thi respects identity functions and function composition. Functorial.

4. Exactness. HomR is left-exact :

(a) If M ′ →M →M ′′ → 0 is an exact sequence, then for any N ,

0→ HomR(M ′′, N)→ HomR(M,N)→ HomR(M ′, N)

is also exact.

(b) If 0→ N ′ → N → N ′′ is exact then

0→ HomR(M,N ′)→ HomR(M,N)→ HomR(M,N ′′)

is exact.

For R-moduleM,N there is a tensor productM⊗RN , which we get by taking all
formal sums of symbols m⊗ n,m ∈M,n ∈ N , mod out by subgroup generated
by elements of the form

• (m+m′)⊗ n−m⊗ n−m′ ⊗ n;

• m⊗ (n+ n′)−m⊗ n−m⊗ n′;

• (rm)⊗ n−m⊗ (rn).
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Example 2.2.2.

R[x1, . . . , xn]⊗R R[y1, . . . , yn] ∼= R[x1, . . . , xn, y1, . . . , yn].

Properties of ⊗R.

1.
R⊗RM ∼= M

∑
ri ⊗mi 7→

∑
rim 1⊗m < −m.

2.
(⊕Mi)⊗R N ∼= ⊕ (Mi ⊗R N) .

3. Functornality. For R-module homomorphisms α : M →M ′, β : N → N ′,
we get an R-module homomorphism

α⊗ β : M ⊗R N →M ′ ⊗R N ′
∑

mi ⊗ ni 7→
∑

α(mi)⊗ β(ni).

4. Right exactness. If M ′ →M →M ′′ is exact, then

M ′ ⊗R N →M ⊗R N →M ′′ ⊗R N → 0.

is exact.

5. Symmetry.

M ⊗R N ∼= N ⊗RM
∑

mi ⊗ ni 7→ ni ⊗mi.

Proposition 2.2.3.
M [U−1] ∼= R[U−1]⊗RM.

Proof sketch. The procedure we could do is

m

u
7→ 1

u
⊗m rm

u
←[

r

u
⊗m.

Definition 2.2.4. An R-module F is flat whenever

f : M → N is injective,

and the map
F ⊗RM → F ⊗R N is injective.

Alternatively,

0→M → N exact =⇒ 0→ F ⊗RM → F ⊗R N exact .

Theorem 2.2.5. R[U−1] is always a flat module over R.
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Proof. Suppose f : M → N is injective. We need to check M [U−1] → N [U−1]
is also injective.

Suppose m
u ∈ M [U−1] which goes to 0 in N [U−1], then f(m)

u = 0
1 in N [U−1].

This means there exists v ∈ U s.t. vf(m) = 0, which leads to vf(m) = f(vm) =
0. Since f is injective, vm = 0 in M . Then m

u = vm
vu = 0

m = 0
1 .

Example 2.2.6. Q is a flat module over Z. Z/2 is a falt module over Z/6.
Both C(x) and C[x, x−1] are flat over C[x].

Theorem 2.2.7. A module M over R is zero iff for every maximal ideal m,
the localization Mm is zero.

Definition 2.2.8. An R-module M is Noetherian is every submodule of M is
finitely genereated.

Theorem 2.2.9. If

0→M ′
f−→M

g−→M ′′ → 0

is exact, then M is Noetherian (resp. Artinian) iff M ′ and M ′′ are both Noethe-
rian (resp. Artinian).

2.3 Rings and Modules of Finite Length

Definition 2.3.1. An R-module M is simple iff M has exactly 2 R-submodule:
0 and M .

Definition 2.3.2. A composition series for a module M is a chain

0 = M0 < M1 < M2 < · · · < Mn−1 < Mn = M

of submodules (with strict inclusion) such that for all 1 ≤ i ≤ n, Mi/Mi−1 is
simple.

Proposition 2.3.3. A Z-module M is simple iff it’s of the form Z/p where p
is prime.

Proposition 2.3.4. Let R be an R-module, J be an ideal. R/J is simple iff J
is maximal.

Example 2.3.5. Let R = C[x, y], M = Cz[x, y]/(x2, xy, y2).

Proposition 2.3.6. If k is a field, a compositions series for a vectors space V
exists iff V is finite dimensional, the sequence always goes from 0 dimension to
1, 2, and grows to the entire thing V .

Definition 2.3.7. The length of an R-module M is the minimal length of a
compositions series, if one exists, or ∞. We denote it as l(M).

Theorem 2.3.8. Every composition series for M has the same length.

Throughout the following, we assume all modules we work with have finite
length.

8



Proposition 2.3.9. If N < M =⇒ l(N) < l(M).

Proof. Choose a composition series for N :

0 < N1 < N2 < · · · < N.

We start with a composition series for M of minimal length:

0 < M0 < M1 < · · · < Mn = M.

We intersect it with N : Nk = Mk ∩ N . Then we don’t necessarily have strict
containment.

0 = N0 ≤ N1 ≤ N2 ≤ · · · ≤ Nn = N.

Theorem 2.3.10. Every composition series of M has the same length.

Proof. Suppose we have a composition series

0 = M0 < M1 < · · · < Mn = M,

with the assumption that Mk/Mk−1 simple. Then

0 ≤ l(M0) < l(M1) < · · · < l(Mn) = l(M).

Thus n ≤ l(M). From the definition of length, we know n = l(M).

Proposition 2.3.11. l(M) <∞ iff M satisfies ACC and DCC.

Definition 2.3.12. A finite filtration of a module M is a sequence

0 = M0 ≤M1 ≤M2 · · · ≤Mn = M.

Associated to a filtration, we have subquotients

Mk/Mk−1 = grk(M) grading k.

Proposition 2.3.13. Suppose M,N are modules with filtrations {Mk}, {Nk}
and a function f : M → N s.t. f(Mk) ⊆ Nk. Then we get induced module
maps

grk(M)→ grk(N) where [x] 7→ [f(x)].

Also, if all of these are isomorphisms, then so is f .

Example 2.3.14. grk(M) ∼= 0 ⇐⇒ Mk/Mk−1 = 0 ⇐⇒ Mk−1 = Mk.

Theorem 2.3.15 (Snake Lemma). If (DO THE TIKZ)

Proposition 2.3.16. Suppose M has a composition series and N is a submod-
ule with quotient M/N . We have

l(M) = l(N) + l(M/N).
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Suppose M has a filtration, we could take the entire sequence and localize it.

Proposition 2.3.17. If R is Noetherian, then so is any quotient R/J and any
localization S−1R.

Subrings of Noetherian ring are not necessarily Noetherian.

Theorem 2.3.18. If R is Noetherian, then so is R[x].

Definition 2.3.19. If we have a polynomial a0 +a1x+a2x
2 + · · ·+anx

n, an 6=
0, ai ∈ R, we say f has degree n and an is its lead coefficient

Theorem 2.3.20 (Hilbert basis theorem). If R is Noetherian, then so is R[x].

A natural proposition of the theorem will be the following.

Proposition 2.3.21. If R is Noetherian, so is R[x1, . . . , xn].

Theorem 2.3.22. If R is Noetherian, so is the power series ring R[[x]].

3 Primary Decomposition

3.1 Associated Primes

Definition 3.1.1. Suppose M is an R-module. The set of associated primes is
the collection

Ass(M) = {P | P ≤ R is prime P = an(x) | x ∈M}.

Proposition 3.1.2. If M 6= 0, then Ass(M) is not empty. In fact, any ideal
which is maximal in the set {ann(x) | x ∈M,x 6= 0} is prime.

If R is Noetherian and M 6= 0, then Ass(M) 6= ∅.

Proposition 3.1.3. P ∈ Ass(M) iff there exists an injective map of R-modules
R/P →M .

Proposition 3.1.4. Suppose R is Noetherian and M finitely generated R-
module. Then there exists a filtration

0 = M0 ⊆M1 ⊆ .. ⊆Mk = M

such that the subquotients gri(M) = Mi/Mi−1 are isomorphic to R/Pi where
Pi are prime.

Proposition 3.1.5. Suppose M is an R-module and N ⊆ M is a submodule.
Then

Ass(N) ⊆ Ass(M) ⊆ Ass(N) ∪Ass(M/N).

Proof. First containment.

P ∈ Ass(N) =⇒ P = ann(x) x ∈ N ⊆M =⇒ P ∈ Ass(M).
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Second containment.

Take P ∈ Ass(M), then P = ann(y) where y ∈M . Consider y ∈M/N .

First case is that ann(y) = P , then P ∈ Ass(M/N).

Second is that ann(y) > ann(y) = P . Then there exists s ∈ R such that
s ∈ ann(y) but s /∈ P . Then sy ∈ M, sy = sy = 0 ∈ M/N , which tells us that
sy ∈ N .

We know that r ∈ ann(sy) ⇐⇒ rs ∈ ann(y). Note that ann(sy) = P .

Example 3.1.6. Consider C[x, y]/(x2, xy) = M . Then

AssC[x,y](M) = {(x), (x, y)}.

We know this from observing ann(y) = (x), ann(x) = (x, y).

3.2 Prime Avoidance

Theorem 3.2.1. Suppose I1, I2, . . . , In, J are ideals such that J ⊆ ∪ni=1Ij. If
either

1. the ambient ring R contains an infinite field, or

2. at most two of the ideals I1, I2, . . . , In are not prime,

then J ⊆ Ij for some j.

Proposition 3.2.2.⋃
P∈Ass(M)

P = {0} ∪ {x ∈ R | x is a zero-divisor on M}.

Proposition 3.2.3. Suppose M is a finitely generated module over a Noethe-
rian ring R. Then Ass(M) automatically contains any minimal elements in the
set

{P ⊆ R | P prime, P ⊇ ann(M)}.

Definition 3.2.4. An idea I ⊆ R is primary iff |Ass(R/I)| = 1. Specifically,
say Ass(R/I) = {P}, then we say I is P -primary.

Proposition 3.2.5. An ideal I is P -primary iff

1. Every element x /∈ P is not a zero divisor in R/I.

2. Every element x ∈ P has a power xn ∈ I.

Proposition 3.2.6. An ideal I ⊆ R is P -primary iff any of the following cri-
teria are true.

1. If xy ∈ I, and x /∈ P , then y ∈ I.

Proposition 3.2.7. An ideal I ⊆ R is primary iff

1. if xy ∈ I and x /∈ I, then yn ∈ I for some n > 0.
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2. if xy ∈ I, x /∈ I, y /∈ I, then xn ∈ I and ym ∈ I for some n,m > 0.

Proposition 3.2.8. In a Noetherian ring R, every ideal is a finite intersection
of irreducible ideals.

The above could be proven by looking at the maximal counterexample.

Proposition 3.2.9. If I ⊆ R is an irreducible ideal, then I is primary.

Combine them together we have the following.

Proposition 3.2.10. Any ideal of R is a finite intersection of primary ideals.

Note that we proved irreducible implies primary, but the converse is false.

Also we showed that if I is P -primary, then Pn ⊆ I ⊆ P . The converse is not
true either.

Proposition 3.2.11. If M is maximal and Mn ⊆ I ⊆M , then I is M -primary.

Minimal primes in the primary decomposition are unique.

If R is a UFD, so is R[x]. How do we check whether a polynomial P = a0 +
a1x+ · · ·+ anx

n is irreducible?

1. gcd(a0, . . . , an) = 1

2. P is irreducible in Q[x] where Q is the fraction field.

If M is an R-module. ( R Noetherian, M finitely generated).

Definition 3.2.12. A submodule N ⊆M is P -primary in M if AssR(M/N) =
{P}.

3.3 Nakayama’s Lemma

Proposition 3.3.1. Suppose R is a ring, M a finitely generated module over
R, I ⊆ R an ideal. If IM = M , then there exists a ∈ R such that a ∼= 1 mod I
and aM = 0.

Definition 3.3.2. The Jacobson radical of a ring R is the intersection of all
maximal ideals of R, called the Jacobson radical .

Proposition 3.3.3 (Nakeyama’s lemma). x ∈ R is an element of the Jacobson
radical iff 1 + rx is a unit for any r ∈ R.

Proposition 3.3.4 (Nakayama’s Lemma). If N is a finitely generated R-module
and mN = N then N = 0.

local rings have unique maximal ideal.

Nakeyama’s lemma has other different forms, for example the following.

Theorem 3.3.5. Suppose R is a local ring, M is a finitely generated R-module,
x1, . . . , xn ∈ M are generators of M mod the maximal ideal, then x1, . . . , xn
generate M .
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If you throw out “finitely generated”, the above theorem is false.

Definition 3.3.6. An idempotent in R is an element e ∈ R, e2 = e.

Proposition 3.3.7. If e ∈ R is idempotent, then R ∼= R/(e)×R/(1− e).

Proposition 3.3.8. If R is a ring, I ⊆ R a finitely generated ideal satisfying
I2 = I, then there exists an idempotent e ∈ R s.t. (e) = I. (implies R ∼= S × I
).

Proposition 3.3.9 (Cayley Hamilton Theorem). Suppose M is a module over
a ring R that can be generated by n elements, and φ : M → M is a module
homomorphism φ(M) ⊆ IM , then there exists a polynomial

f(x) = xn + a1x
n−1 + · · ·+ an, aj ∈ Ij .

such that for all m ∈M ,

0 = φnm+ a1φ
n−1m+ · · ·+ anm.

Definition 3.3.10. Suppose R is a ring and S is an R-algebra (there’s a ring
homomorphism φ from R to S). An element in s ∈ S is integral over R if there
exists a monic polynomial p(x) = xn + a1x

n−1 + · · · + an ∈ R[x] such that
p(s) = 0, which means

sn + φ(a1)sn−1 + · · ·+ φ(an) = 0.

Recall

Theorem 3.3.11 (Rational zeros theorem). If

xn + a1x
n−1 + · · ·+ an

is a polynomial with integer coefficients and p/q ∈ Q, then p/q ∈ Z.

SEARCH

Remark that if Im(φ) is a subring of S, then s is integral over R iff s is integral
over Im(φ).

WLOG we often assume R ⊆ S when discussing integrality.

Definition 3.3.12. For R ⊆ S a subring, define R, the integral closure of R,
to be

{s ∈ S | s is integral over r}.

Theorem 3.3.13. R is a ring containing R.

Proof. To show R ⊆ R, we know r ∈ R satisfies x− r.

Definition 3.3.14. If R ⊆ S and s ∈ S, we define

R[s] := subring of S generated by R and s =

{
r∑
i

ais
i | ai ∈ R

}
.
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Proposition 3.3.15. TFAE

1. s is an integral over R

2. The set R[s] ⊆ S is a finitely-generated R-module

3. there exists a subring R ⊆ T ⊆ S s.t. T is a finitely generated R-module
and s ∈ T .

Proof. 2 =⇒ 3 is immediate when T = R[s].

3 =⇒ 1 uses Cayley-Hamilton Theorem.

In geometry, we are taking out singularities by taking integral closures.

Proposition 3.3.16. If R is a UFD, then R is integrally closed in its field of
fractions K.

Proof. Suppose r
s ∈ K, gcd(r, s) = 1, and r

s is integral over R. We multiply
f( rs ) by sn, then

0 = rn + a1s
n−1 + · · ·+ ans

n =⇒ rn = s(−a1rn−1 − · · · − ansn−1).

This means s divides r but gcd(r, s) = 1. Thus it has to be s is a unit in R.
Thus rs−1 ∈ R.

Proposition 3.3.17. Suppose R ⊆ S is a subring, U ⊆ R is a multiplicatively
closed subset.

R
S

[U−1] = R[U−1]
S[U−1]

.

Proof. 1. If r
s ∈ R[U−1], then r

s is integral over R[U−1]. Since r
s ∈ R[U−1],

we know r ∈ R.

Definition 3.3.18. Suppose R ⊆ S. We say that this inclusion satisfies

1. lying over if for any prime p ∈ R, there exists a prime q ∈ S such that
p = R ∩ q.

2. going up if for any inclusion of primes p0 ⊆ p1 of R, and prime q0 of S s.t.
q0 ∩R = p0, there exists q1of S s.t. q0 ⊆ q1 and q1 ∩R = p1.

3. going down: for any inclusion of primes p0 ⊇ p1 of R and q0 in S with
q0 ∩R = p0, there exists prime q1 ∈ S s.t. q0 ⊇ q1 and q1 ∩R = p1.

Example 3.3.19. Consider Z ⊆ Q. lying over No, going up No, going down
Yes.

Example 3.3.20. Consider C[x] ⊆ C[x, y]. The only prime ideal of C[x] is
x− α where α ∈ C.

lying over Yes, going up

14



Show that if R ⊆ S is an integral extension S = R, then some of these properties
are automatically satisfied.

Proposition 3.3.21. Suppose R ⊆ S and S is integral over R. Then

1. This satisfies lying over

2. This satisfies going up

Trick: we are going to use certain quotients and localizations to reduce this to
an easiest case.

Proof. Say we want to prove going up.

Suppose we have prime of S, q0, and primes of R, p0 ⊆ p1, and p0 = q0 ∩ R.
Then define

R′ = R/p0 S′ = S/q0.

There is a map from R′ → S′. (check it’s well-defined). (omitted)

Moreover, if S is integral over R, then S′ is integral over R′.

Proof. Say P ⊆ R is a prime ideal.

Define U = R− P , consider

RP = R[U−1] ⊆ S[U−1] = SP .

The idea is to find a prime ideal Q of SP that contains P [U−1]. If we can
do that, then q = Q ∩ S is a prime of S that doesn’t contain any elements of
U = R− P , which is equivalent to saying that q ∩R ⊆ P . And q = Q ∩ S ⊇ P
and so q ∩R ⊇ P .

So this reduces us to the case R ⊆ S, R is local, and we want to find an ideal
of S that is prime and contains the maximal m ⊆ R.

Idea:

There is an ideal of S, which is mS, m the maximal in R. If we can find a
maximal ideal of S containing mS, then it’s prime and contains m. This is
impossible iff mS = S.

From Nakayama’s lemma, if S was finitely generated, we are done. However we
don’t know that.

If mS = S, then
∑
aixi = 1, where ai ∈ m and xi ∈ S. Let TcS be the subring

of S generated by x1 · · ·xn, as T = R[x1 · · ·xn].

The claim is that T is a finitely-generated R-module and mT = T . Now we
could use Nakayama’s lemma, to get a contradiction saying that T = 0.

Example 3.3.22. We show R→ S which is integral but not finitely generated.
Consider Q ⊆ Q ⊆ C. Note that Q is not finitely generated.

15



3.4 Nullstellensatz

If I ⊆ C[x1 · · ·xn] ideal, then I(V (I)) =
√
I.

Proposition 3.4.1. Suppose R,S are domains K the fraction field of R, and
that the fraction field of S, L, is integral over K. Then any prime ideal P ⊆ S
is either 0 or it has nontrivial intersection with R.

Proof. P is a prime ideal of S that’s not trivial, which implies that P contains
some nonzero element, denoted by b. Since b ∈ S, the image b/1 ∈ L is integral
over K. Thus there exist elements

a1
u1
,
a2
u2
, . . . ,

an
un

such that
0 = bn +

a1
u1
bn−1 + · · ·+ an

bn
∈ L.

Then we could have an
bn

= −b times something in L. Multiply by some large
element to clear all denominators u1u2 · · ·un.

Then
(u1u2 · · ·un)an = −b something in S ∈ P.

Since the LHS is in R, if LHS 6= 0, we are done.

Since R was a domain and ui’s were in denominators, we could only have an = 0.
Then the original polynomial will be

0 = bn + · · ·+ an−1
un−1

b.

Since b 6= 0 by assumption and S is a domain, we could divide both sides by b
and just do so iteratively.

Therefore, every prime ideal os S intersects R nontrivally.

Corrallary 3.4.2. If S is integral over R, and q0 ( q1 proper containment of
prime ideals, then

q0 ∩R ( q1 ∩R

still proper.

The idea behind this is that integrality preserves dimensions.

Proof. Define p0 = q0 ∩ R, p1 = q1 ∩ R, we know p0 ⊆ p1. We still get an
injective map

R/p0 → S/q0.

We each have ideals p1/p0 and q1/q0, this map also preserves integrality. The
fact that q1 properly contains q0 implies that q1/q0 6= (0). Since R/p0 ⊆ S/q0
are domains since they are moded out by prime ideals.
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Then

R/p0 ∩ q1/q0 = (R/R ∩ q0) ∩ (q1/q0)

= (R ∩ q1)/R ∩ q0
= (R ∩ q1) 6= R ∩ q0,

as desired.

Proposition 3.4.3. Suppose R ⊆ S and S is integral over R. Then S is a field
iff R is a field. (Also S needs to be an integral domain).

Proof. Suppose R is a field, x ∈ S. Since S is integral over R, we have

0 = xn + a1x
n−1 + · · ·+ an, ai ∈ R.

We claim that WLOG we can assume an 6= 0 because S is an integral domain.
Because R is a field, an has an inverse.

an = x(−xn−1 − a1xn−2 − · · · − an−1)

1 = x

(
−xn−1 − a1xn−2 − · · · − an−1

an

)
Thus x is a unit, which implies S is a field.

Other direction: Suppose S is a field. If R is not a field, then there exists some
nontrivial maximal ideal of R: (0) ( m. By going up we get (0) ⊆ P , and
P ∩R = m, which implies P = (0).

Nullstellensatz

1. maximal ideals of C[x1, . . . , xn] are of the form (x1−a1, . . . , xn−an) where
ai ∈ C.

2. For any ideal J , I(V (J)) =
√
J .

where V (J) consists of all n-tuples x = (x1, . . . , xn) ∈ Cn such that f(x) = 0
for all f ∈ J , and I(U) is the ideal of all polynomials that vanish on the set U .
Also

√
J denotes the radical of J , which means all r ∈ C[x1, . . . , xn] such that

rn ∈ J for some n ∈ Z+.

Definition 3.4.4. A Jacobson ring is a ring R satisfying: any prime ideal P is
an intersection of maximal ideals

P =
⋂
α∈A

mα.

Example 3.4.5. Z is a Jacobson ring. Most prime ideals are already maxi-
mal ideals so it’s the intersection of itself. The only left is (0), which is the
intersection of all prime ideals in Z.

Remark that if P is not maximal, this intersection has to be infinite because
otherwise it violates prime decomposition thing.
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Example 3.4.6. Local rings are typically not Jacobson rings. If we take Z(2),
we only have 2 prime ideals (0) and (2), and (0) fails to be the intersection of
maximal ideals.

The idea is that local rings are sort of “too small” to be Jacobson rings.

Example 3.4.7. Fields are jacobson rings. (0) is the only ideal.

Theorem 3.4.8 (Nullstellensatz(general version)). Suppose R is a Jacobson
ring and S is a finitely-generated R-algebra. In other words there is a surjection
from R[x1, . . . , xn] to S. Then

1. S is also a Jacobson ring

2. If η is any maximal ideal of S, then m = R ∩ η is a maximal ideal of R,
and the map

R/m→ S/η

is a finite field extension. In other words, S/η is a finite dimensional
module over R/m.

Suppose R is an algebraically closed field (C). Then R is a Jacobson ring. Note
that C[x1, . . . , xn] is a finitely generated algebra over C.

Then Nullstellensatz tells us that

1. Every prime ideal P ⊆ C[x1, . . . , xn] is an intersection of maximal ideals.

2. If η ⊆ C[x1, . . . , xn] is maximal, then η ∩ C = (0), and the map

C→ C[x1, . . . , xn]/η

is a finite field extension. Then, C[x1, . . . , xn]/η ∼= C. There exists
(a1, . . . , an) ∈ Cn such that (x1 − a1, x2 − a2, . . . , xn − an) ⊆ η, which
is already maximal. Thus this is not only a containment but an equality.

If J is any ideal, then

√
J = {x ∈ C[x1, . . . , xn] | xn ∈ J some n} =

⋂
J⊆P

P.

If every prime is an intersection of maximal ideals, then⋂
J⊆P

P =
⋂
J⊆P

⋂
P⊆m

m =
⋂
J⊆m

m,

where P prime and m maximal. We could rewrite the maximal ideals as

=
⋂

J⊆(x1−a1,...,xn−an)

{f ∈ C[x1, . . . , xn] | f(a1, . . . , an) = 0}

= {f ∈ C[x1, . . . , xn] | f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V (J)}

What do we know about R[x1, . . . , xn]? Take η ∈ R[x1, . . . , xn]. We have finite
field extensions

R→ R[x1, . . . , xn]/η ∼= C or R.
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Then we could play the same argument which tells us that the maximal ideal
looks like (x1 − a1, . . . , xn − an) where ai ∈ R.

Iso to C tells us that for some i, we have xi 7→ C−R, which gives us x2i −axi−b.
For any j 6= i, we have j goes to some complex number, which is equal to
rj + sjxi. Thus

η = (x2i − axi − b, r1 + s1xi − x1, r2 + s2xi − x2, . . . , rn + snxn − xn) = Cn.

Every maximal ideal of R[x1, . . . , xn] is of one of the forms

1. (x1 − a1, . . . , xn − an) where ai ∈ C

2. or it corresponds to a pair of complex conjugate points

(a1, . . . , an), (a1, . . . , an) ∈ Cn.

Then in 1 variable: R[x] have (x− a) or (x2 + bx+ c) where b2− 4c < 0 are the
maximal ideals.

We’ll prove that Theorem 3.4.8 implies the standard Nullstellensatz. Before
that, we prove the following lemma.

Lemma 3.4.9. Suppose R ⊆ S are both domains, with fields of fractions K,L
respectively. Suppose that S is a finitely generated R-algebra and L is obtained
from S by inverting finitely many elements (L = S[ 1

b1
, . . . , 1

bk
]).

Then

1. K is obtained from R by inverting finitely many elements

2. L is a finite extension of K. In other words, L is a finite-dimensional
K-vector space, or equivalently, L is integral over K.

Remark that inverting finitely many elements is equivalent to inverting one
element because 1

ab = 1
a ·

1
b .

Proof. It suffices to prove this when S is obtained from R by adding one gener-
ator.

This is because the fact that S is a finitely generated R-algebra by definition
will give us

R ⊆ R[s1] ⊆ R[s1, s2] ⊆ · · · ⊆ R[s1, . . . , sn] = S.

If we can prove for adding one generator, then inductively we get result for R.

Suppose S is obtained from R by adding a single generator t. This means that
there’s a surjective homomorphism

R[x]→ S where x 7→ t.

This means S ∼= R[x]/J for some ideal J . Then K[t] ∼= K[x]/P for some ideal
P , but in a field we just have P = (f(x)) where f(x) is monic or 0.
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Since we can get L by inverting finitely many elements of S, we can also get
L by inverting finitely many elements of K[t] ∼= K[x]/(f(x)). If f(x) = 0,
then K[t] ∼= K[x]. We cannot get a field from K[x] by inverting finitely many
polynomials. Why? Adding g(x)−1 only inverts prime factors of g(x).

K[x] has infinitely many primes. If we had finitely many primes pi, we take∏
pi + 1 and it has to be divisible by some new prime but it’s not indivisible by

any pi(x).

Thus K[t] 6∼= K[x] and we must have K[t] ∼= K[x]/(f(x)) where f(x) is monic
such that f(t) = 0.

0 = tn +
a1
b1
tn−1 + · · ·+ an

bn
ai, bi ∈ R.

Then we multiply by
∏
bi to get

0 = c0t
n + c1t

n−1 · · ·+ cn ci ∈ R, c0 6= 0.

This identity holds in K[t] ⊆ L so it also holds in the ring S.

If we invert cn ∈ R, then R[c−10 ] has element t satisfies a polynomial

0 = tn +
c1
c0
tn−1 + · · ·+ cn

c0
.

So R[t, c−10 ] is integral over R[c−10 ]. If L is formed by inverting finitely many
elements of S, then L = S[g−1] with g ∈ S ⊆ R[c−10 , t]. Thus g satisfies a monic
polynomial with coefficients in R[c−10 ]:

gm + d1g
m−1 + · · ·+ dm = 0.

WLOG we assume dm 6= 0. If we invert dm, then g becomes a unit, so
R[c−10 , d−1m ][t] = L.

Thus L is integral over R[c−10 , d−1m ], since L is a field, R[c−10 , d−1m ] is a field and
L is finite over R[c−10 , d−1m ].

Proposition 3.4.10. A ring R is a Jacobson ring iff one of the following cri-
teria is satisfied.

1. Every prime P is an intersection of maximal ideals.

2. For any prime P and any f ∈ S, if P [f−1] is maximal in R[f−1] then P
was maximal in R.

3. If P ⊆ R is prime and (R/P )[f−1] is a field, then R/P is a field.

Proof. First notice that P [f−1] is maximal iff R[f−1]/P [f−1] is a field, which
iff (R/P )[f−1] is a field, with condition from (3) we’ll get R/P is a field.

We proceed with the equivalence of (1) and (2).

Suppose P is not an intersection of maximal ideals. This is true iff there exists
f s.t. f /∈ P but f ∈ m for any m ⊇ P . Iff there exists f such that in the
ring R[f−1], P [f−1] is prime and all the maximal ideals containing P become
R[f−1]. Choose a maximal ideal of R[f−1] containing P [f−1]. This ideal is
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Q[f−1] for some prime Q ⊇ P . Then Q would be a prime ideal with f /∈ Q, and
Q[f−1] would be maximal even though Q was not, because all maximal ideals
containing P also contain f .

Nullstellenstaz proof. Let R be a Jacobson ring and S a finitely generated R-
algebra. Suppose Q ⊆ S is prime such that (S/Q)[f−1] is a field. We want to
show S/Q is a field. Then P = R ∩Q is prime and get an injective map

R/Q→ S/Q.

between domains. Thus S/Q is finitely generated over R/P . By assumption,
(S/Q)[f−1] is a field, the lemma implies that there exists g ∈ R/P such that
(R/P )[g−1] is a field. and (S/Q)[f−1] is finite over (R/P )[g−1].

Since R is a Jacobson ring, (R/P )[g−1] is a field implies that R/P is a field.
And (S/Q)[f−1] is finite implies S/Q is finite, which shows S/Q is a field.

If Q was maximal, then P = R ∩Q is also maximal because R/P is a field.

3.5 Graded Rings

Definition 3.5.1. A graded ring R is a ring with a collection of subgroups
Rn ⊆ R such that

1. if f ∈ Rn, g ∈ Rm, then fg ∈ Rn+m.

2. the ring R is the direct sum of the Rn: for any f ∈ R, there exists q
unique fn ∈ Rn such that fn = 0 all but finitely many n, and

∑
fn = f .

Example 3.5.2. Take C[x0, . . . , xn] = R. We could take

Rn = span〈xm0
0 · · ·xmn

n |
∑

mi = 0〉.

We say f ∈ R is homogeneous of degree n iff f ∈ Rn, otherwise inhomogenous.

Remark 3.5.3. Usually, n ∈ Z. But sometimes we have n ∈ N, n ∈ Z/2, or
n ∈ Zk,Nk. Generally, we just need to graded on some commutative monoid.

We could also take a different perspective on graded rings.

Definition 3.5.4. A graded ring is a collection of abelian groups (Rn) with
multiplication maps

· : Rp ×Rq → Rp+q,

and 1 ∈ R0, satisfying associativity, commutativity, unitality and distributivity.

3.6 Graded Modules

Definition 3.6.1. A graded R-module is an abelian gropu with subgroups (Mn)
making M into a graded, and an R-module structure on M such that for f ∈
Rp,m ∈Mq, we have fm ∈Mp+q.

Example 3.6.2. Say R = C[t], deg(t) = |t| = 1, M = C[t], and Mk = 〈tk+d〉
for fixed d.
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More generally, if R is a graded ring and M is a graded R-module, d a number,
we could define M(d) to be a new graded R-module with

M(d)n = Mn+d.

Definition 3.6.3. A homogeneous ideal in a graded ring R is

1. an ideal I ⊆ R such that I is also graded where Ip = I ∩Rp then I = ⊕Ip.

2. an ideal I ⊆ R such that for any f ∈ I, if we break it into homogeneous
components f =

∑
n fn then fn ∈ I.

3. an ideal I ⊆ R such that I is generated by homogeneous elements. There
exists homogeneous elements fi ∈ I such that any element is of the form∑
aifi, ai ∈ R.

4. a graded R-submodule of the graded R-module R.

Example 3.6.4. Some homogeneous ideals: (x2, x3 + y3) ⊆ C[x, y]; (x2, x2 +
y3) ⊆ C[x, y]

Example 3.6.5. Non-homogeneous ideal: (x + y2) ⊆ C[x, y] because (x + y2)
in ideal but x /∈ the ideal.

Example 3.6.6. In C[x0, . . . , xd] where |xi| = 1. We have the “irrelevant
ideal”: the one spanned by (x0 · · ·xd). In fact, every non-trivial homogeneous
ideal is contained in the irrelevant ideal.

If I have a non-trivial homogeneous ideal f(x0, . . . , xd) ∈ I, then the degree-zero
part of f is in I. Either all the elements in the ideal have no constant coefficient
or I contains a nonzero element a ∈ C, then 1

aa = 1 ∈ I which implies I is
everything.

For the next bit, restrict to

R = C[x0 · · ·xd] |xi| = 1.

If we have a graded R-module, M , where (Mm)n ∈ Z. Then each Mm is a
C-vector space. So it has a dimension.

If Mn is finite-dimensional for all n, we get two things:

1. Hilbert function

HM : Z→ N HM (s) = dim(Ms).

With shifting, we have

HM(k)(s) = HM (s+ k).

2. Poincare series. ∑
HM (s)ts.
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3.7 Oct 30

Prove that if M is a finitely-generated graded module over C[x0, . . . , xd], then

PM (t) =
f(t)

(1− t)d+1
.

then f(t) some Laurent polynomial :

f(t) = akt
k + ak+1t

k+1 + · · ·+ alt
l.

where ai ∈ Z, and k ≤ l are integers.

[Proof omitted]

Consequence of the Hilbert function

The poincare series is

PM (t) =
∑
n

HM (n) · tn.

Note that now we have

PM (t) =

l∑
j=k

ajt
j 1

(1− t)d+1
aj ∈ Z

=

l∑
j=k

ajt
j

( ∞∑
n=0

(
−d− 1

n

)
(−1)ntn

)
(
−d− 1

n

)
=

(
d+ n

d

)
PM (t) =

l∑
j=k

ajt
j

( ∞∑
n=0

(
d+ n

d

)
tn

)

=
∑
m

tm

 l∑
j=k

aj

(
d+m− j

d

)
Notice that for large m,

∑
aj
(
d+m−j

d

)
is a polynomial in m of degree d with

coefficients in Q.

Therefore HM (m) is a polynomial in M for sufficiently large m. (when m ≥ l).

3.8 filtration

What is nice about power series rings?

Suppose M is a module over a ring R. A decreasing filtration on M is a sequence
of submodules

M = M0 ⊇M1 ⊇M2 ⊇ · · · .

Example 3.8.1. The trivial filtration is Mn = M/
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Example 3.8.2. Say J ⊆ R is an ideal. Then

R ⊇ J ⊇ J2 ⊇ J3 ⊇ · · · .

This is the J-adic filtration of R.

Example 3.8.3. Look at C[x], and let J = (x), we could have

C[x] ⊇ (x) ⊇ (x2) ⊇ (x3) ⊇ · · · .

Example 3.8.4. Look at Z, and let J = (p) where p prime. Then

Z ⊇ (p) ⊇ (p2) ⊇ · · · .

This is p-adic filtration of Z.

Associated to a filtration
M0 ⊇M1 ⊇ · · · .

we have

1. associated graded gr(M) where

grk(M) = Mk/Mk+1.

2. To any element m ∈ M , we could take n to be the supremum of k such
that m ∈Mk. Then the initial form of m:

[m] ∈ grn(M).

since m ∈Mn and m /∈Mn+1, the initial form [m] is not zero. Therefore
the initial form and initial degree are well-defined for all m /∈M0∩M1∩· · ·.

3. We say this filtration on M is separated if

∩∞k=0M
k = (0).

4. Associated to M we also get a sequence of quotients

0 = M/M0 �M/M1 �M/M2 � · · · .

Definition 3.8.5. Suppose we have a tower

→ · · · → S2 → S1 → S0.

of sets and functions. The limit
lim
k
Sk

is the set

{(a0, a1, a2, . . .) ∈ S0 × S1 × S2 × · · · | ∀n ≥ 0, fn(an+1) = an}.
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Example 3.8.6. If
· · · ⊆ S2 ⊆ S1 ⊆ S0,

then

lim
k
Sk ∼=

∞⋂
k=0

Sk.

Proposition 3.8.7. If Sk are groups and Fn are group homomorphisms, then
limk Sk is also a group.

Proof. Standard algebra proof. At the end we have

lim
k
Sk ⊆

∏
Sk

is a subgroup.

Example 3.8.8. For any ring R and ideal J ⊆ R, we get a tower

→ · · · → R/J2 → R/J1 → R/J0

of rings and ring homomorphisms. So we get a limit:

lim
k
R/Jk = R∧J .

Remark 3.8.9. If we take a “subsequence” of Sk then the limit is the same.

Example 3.8.10. Consider C[x]/(xn). Then

C[x]∧(x)
∼= lim

k
C[x]/(xk) ∼= C[[x]],

the power series ring.

WHat’s the point of power series?

Give solutions to equations that didn’t have them before. For example, if we
have y2 = 1 + x and solve for y, this has no solutions in C[x]. But it has

approximate solutions. For example, y = 1 + x
2 will give 1 + x + x2

4 which is
pretty close to 1 + x.

We could do the induction to add terms to y to get a pretty close solution. This
technique relies on a notion of things being “close” to each other. In C[[x]] and

C[x], we say 1 + x+ x2

4 is close to 1 + x because x2

4 is small.

Consider
R ⊇ J ⊇ J2 ⊇ J3 · · · .

Definition 3.8.11. Suppose R is a ring J ⊆ R an ideal, M an R-module with
a filtration

M0 ⊇M1 ⊇M2 ⊇ · · · .

We say this filtration is compatible with J if

J ·Mm ⊆Mn+1.
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Example 3.8.12. If M any module,

M ⊇ JM ⊇ J2M ⊇ · · ·

is the J-adic filtration on M and it’s compatible with J .

Example 3.8.13. If I ⊇ J then the I-adic filtration on M is compatible with
the J adic one.

Proof. We have
M ⊇ IM ⊇ I2M ⊇ · · · .

Then
J(IkM) ⊆ I(IkM) = Ik+1M.

Proposition 3.8.14. If M has a filtration compatible with J , then gr(M)
(graded abelian group) is a module over grJ(R)⊕ Jn/Jn+1.

The problem is that:

Mostly for an R-module, M , we are interested in the J-adic filtration

M ⊇ JM ⊇ J2M ⊇ · · · .

and the associated J-adic completion is defined as

lim
k

(M/JkM) = M∧J .

If N ⊆M is a submodule, then I have a J-adic filtration on N .

Whenever N ⊆M is a submodule, and M has a filtration, then N gets a natural
filtration:

M = M0 ⊇M1 ⊇ · · · Nk := Mk ∩N.

This filtration has the property that

gr(N) ⊆ gr(M).

However, for J-adic ones, we have two choices:

{JkN} {N ∩ JkM}.

Definition 3.8.15. A filtration on M that is compatible with J is called stable
if for all n ≥ N , JMn = Mn+1.

Proposition 3.8.16 (The Artin-Rees Lemma). If R is Noetherian, J ⊆ R an
ideal, M is a finitely-generated module with a J stable filtration, and M ′ ⊆ M
a submodule. Then the filtration

(M ′ ∩Mk)

is also a stable filtration of M ′.
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Proposition 3.8.17. If we have a J-stable filtration on M then

lim
k
M/Mk

∼= M∧J := lim
k

(M/JkM).

Example 3.8.18. If M is a finitely generated module and M ′ ⊆M a submod-
ule, then

lim
k

(M ′/JkM ∩M ′) ∼= (M ′)∧J .

Example 3.8.19. Say R = Z, J = (2).M = Z2. Then this has 2-adic filtration

Mk = {(2ka, 2kb) | a, b ∈ Z}.

Let
M ′ = {(a, b) | a is even} = {(2c, d) | c, d ∈ Z}.

There are 2 filtrations on M :

1. standard 2-adic filtration

(M ′)k = {(2k+1c, 2kd) | c, d ∈ Z}.

2. filtration inherited from M .

M ′ ∩Mk = {(2ka, 2kb) | a, b ∈ Z} for k ≥ 1 = Mk.

More generally

If we have a J-stable filtration on a module N , then

Nk ⊇ JkN0.

and J-stability says that for some N ,

JNn = Nn+1 for n ≥ N,

which tells us
JkNn = Nn+k.

Proposition 3.8.20. If M is a finitely generated module over a Noetherian
ring and N ⊆M is a submodule, then N∧J is isomorphic to a submodule of M∧J .

Proposition 3.8.21. If the filtration on M is compatible with J (meaning:
JMk ⊆Mk+1), the gr(M) is a graded module over gr(R).

Proof. We want to know the multiplication

(r0, r1, r2, . . .) · (m0,m1,m2, . . .) rk ∈ Jk/Jk+1,mk ∈Mk/Mk+1.

Suppose [r] ∈ Jk/Jk+1 and [m] ∈Mj/Mj+1, we want to define

[r] · [m] = [rm] ∈Mj+k/Mj+k+1.

Then we need to ask ourselves that
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1. Is rm ∈Mj+k?

2. Well-defined?

Definition 3.8.22. Suppose R is a ring, and J ⊆ R an ideal, the Rees algebra
or Blow up algebra is a graded ring BJR with

(BJR)k = Jk.

It is a subring of R[t] if we think like

R⊕ Jt⊕ J2t2 ⊕ · · ·

which is contained in
R⊕Rt⊕Rt2 ⊕ · · · .

Proposition 3.8.23. If J is a finitely generated ideal, then BJR is a finitely
generated R-algebra.

Proof. If J = 〈x1, . . . , xnrangle. Then we get elements yk = xkt which are in
Jt ⊆ BJR. Any element in BJR is of the form

(r0, r1, r2, . . .) where rk ∈ Jn.

Then rk ∈ Jk implies that

rk =
∑

am1···mnx
m1
1 · · ·xmn

n ,
∑

mi = k.

Thus we could multiply rk by tk and get

rkt
k =

∑
am1···mn

ym1
1 · · · ymn

n .

So rkt
k is in R[y1 · · · yn] and thus

∑
rkt

k is in R[y1 · · · yn].

We like blowup algebra because it has two homomorphism, one to R by setting
t = 0, the other goes to gr(R) = R/J ⊕ J/J2 ⊕+ · · ·.

Suppose M is an R-module with a filtration J

M0 ⊇M1 ⊇M2 ⊇ · · · .

compatible with J : JMn ⊆Mn+1.

We define
BJM = M0 ⊕M1 ⊕M2 ⊕ · · · ⊆M [t].

where
BJM =

{∑
ait

i | ai ∈Mi

}
.

Proposition 3.8.24. BJM is a module over BJR.

Proof. Writing things down using definition kind of proof.
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Proposition 3.8.25. Suppose that M is a finitely generated R-module with a
compatible filtration J, compatible with J , R is Noetherian. Then this filtration
is J-stable iff BJM is a finitely generated module over BJM .

Before we prove that, we observe that if we assume the proposition to be true
we get the Artin-Rees Lemma.

Corrallary 3.8.26 (Artin-Rees Lemma).

Proof. Suppose M is a finitely-generated R-module, J ⊆ R an ideal, R is
Noetherian and M has a J-stable filtration.

M0 ⊇M1 ⊇M2 ⊇ · · · .

N is a submodule of M . We want to show Nk = N ∩Mk is a J-stable. Since R
is Noetherian,

• N is also finitely-generated as an R-module.

• Proposition we are assuming: we are assuming that BJM is a finitely
generated BJR-module, and we want to show BJN is a finitely-generated
BJR-module.

Since BJR is a finitely-generated algebra of R.( R Noetherian implies J is fin-
gen implies BJR = R[y1 · · · yn] implies BJR is Noetherian). Thus BJN is also
finitely generated.

Proof of proposition. First =⇒ .

Note that BJM is finitely generated over BJR iff there exists finitely many
elements in M0,M1,M2 · · · such that BJM is generated by these. This is true
iff there exists n0 such that BJM is generated over BJR by M0⊕M1⊕· · ·⊕Mn0 .
This is the same as

BJM =
(
R⊕ J ⊕ J2 ⊕ · · ·

)
· (M0 ⊕ · · · ⊕Mn0

) .

An arbitrary element inside looks like

∑
n

( ∑
p+q=n

rkap

)
tn rk ∈ Jk, ap ∈M0 · · ·Mn0

.

Since it’s stable, we know ( ∑
p+q=n

rkap

)
∈ Jn−pMp.

This iff for all n ≥ n0, any element in Mn is bnt
n =

∑
rkaj , which shows

Mn = Jn−n0Mn0
.

Remark 3.8.27. If N ⊆ M is a submodule, M finitely generated, and R is
Noetherian, N∧J →M∧J is injective, so “N∧J ⊆M∧J ”.

Theorem 3.8.28 (Krull intersection theorem). Suppose R is Noetherian and
either
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• R is a domain, or

• R is local

If J ⊆ R is any ideal, then
∞⋂
k=0

Jk = 0.

None-Example 3.8.29. Let R = Z × Z. Then the ideal J = ((0, 1)) = 0 × Z
satisfies J2 = J since (0, 1) is idempotent.

None-Example 3.8.30. Let R be the ring of continuous functions R→ R. Let
J be the ideal containing functions f(0) = 0. Then J2 = J .

4 Flat Families

free R-module.

4.1 Tor

4.2 Homological algebra

Definition 4.2.1. Suppose M is a module over R. A differential on M is
a map d : M → M satisfying d2 = 0. In this case, there are submodules
M ⊇ ker(d) ⊇ Im(d). The associated homology H(M) is ker(d)/Im(d).

Definition 4.2.2. A chain complex is a graded R-module such that d decreases
grading by 1. Specifically

M = ⊕Mn d(Mn) ⊆Mn−1.

or
→ · · · →M2 →M1 →M0.

by d.

Note that H(M) = 0 iff ker(d) = Im(d). In the graded case, it’s equivalent to
say that it’s an exact sequence.

Definition 4.2.3. A cochain complex is a graded R-module such that d in-
creases grading by 1. In this case we write

M0 →M1 →M2 → .

Remark 4.2.4. Chain complex is equivalent data to cochain complex by taking
Mn ↔M−n.

Often when we say chain complex or cochain complex we implicitly are assuming
a “boundary” (where the chain complex stops).

Remark 4.2.5. We can have a graded module over a graded ring with d.
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Suppose we have two R-modules with differentials. A map of differential mod-
ules is a map of R-modules f : M → N satisfying f(dx) = d(fx). Isomorphism
is a map which is invertible. A map of (co)chain complexes is a map of graded
modules that is also a map of differential modules.

Proposition 4.2.6. A map f : M → N of differential modules induces a map
H(M)→ H(N).

Proof. Take [x] ∈ H(M)ker(d)/Im(d) where dM (x) = 0. Then

1. dN (fx) = f(dMx) = f(0) = 0, so [fx] ∈ H(N).

2. well-defined: If [x1] = [x2], then x1 − x2 = dMy, then f(x1 − x2) =
f(dMy) = dN (fy) which implies [fx1] = [fx2].

3. check preserves addition and multiplication by scalars.

Proposition 4.2.7. If M is a chain complex then H(M) is also a graded mod-
ule. If f : M → N is a map of chain complexes, then H(M)→ H(N) is also a
map of graded modules.

Sketch of proof.

M =
{∑

mk | mk ∈Mk

}
ker(d) =

{∑
mk | d

(∑
mk

)
=
∑

d (mk) = 0
}

= {(mk) | d(mk) = 0∀k} .

Definition 4.2.8. For an R-module M , a free resolution is an exact sequence

· · ·F2 → F1 → F0 →M → 0,

such that each Fk is a free R-module.

From a free resolution, we get a chain complex

· · ·F2 → F1 → F0 → 0.

Then

Hk(F ) =

{
0, k > 0

M, k = 0
.

And Hk(F )→ Hk(M) is an isomorphism.

Remark 4.2.9. A free resolution effectively replaces the chain complex

· · · 0→ 0→M → 0

of “bad” modules with a chain complex

· · · → F2 → F1 → F0 → 0

of “good” modules with the same homology.
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Definition 4.2.10. A chain homotopy consists of the following. Suppose we
have differential modules M,N and two maps f, g : M → N of differential
modules. A chain homotopy between them is a map of R-modules h : M → N
satisfying

dNh(x) + hdMx = gx− fx for all x ∈M.

If M,N are graded (chain complexes), we take h(Mn) ⊆ Nn+1.

Proposition 4.2.11. If there exists a chain homotopy from f to g then the two
homology maps HM → HN are equal.

Proof. Say [x] ∈ H(M) = ker(dM )/Im(dM ), then

dNh(x) = g(x)− f(x).

Thus [g(x)] = [f(x)] ∈ ker(dN )/Im(dN ) = H(N).

4.3 Fundamental Lemma of Homological Algebra

Suppose f : M → N is a map of R-module and

· · · → F1 → F0 →M → 0

is a free resolution of M where Fi are free sequences exact. Fi are modules of
syzygys. And

· · · → G1 → G0 → N → 0

is a free resolution of N . Then

1. there exists a map of chain complexes. There exists gi : Fi → Gi maps of
R-modules satisfying d ◦ gi+1 = gi ◦ d and d ◦ g0 = f ◦ d.

2. If we have two such extensions of f to maps of chain complexes, denoted
by g, g′. Then g and g′ are homotopic. There exists maps hi : Fi → Gi+1

satisfying hi−1 ◦ d+ d ◦ hi = g − g′.

4.4 Property of Free Modules

Suppose F is a free R-module and p : N → P is a surjective map of R-modules.
Then for any g : F → P there exists a map g̃ : F → N such that p ◦ g̃ = g.

A projective R-module F satisfies: suppose p : N → P is a surjective map of
R-modules. Then for any g : F → P there exists a map g̃ : F → N such that
p ◦ g̃ = g.

Therefore we’ve shown free modules are projective, the other way around is not
true.

Example 4.4.1. In Z[
√

5], the module (2, 1 +
√

5) is projective but not free.

Remark 4.4.2. What have we define? TFAE

• F is projective

• iff whenever p : N → P is onto every function F → P lifts to a function
F → N
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• iff whenever N → P is onto,

HomR(F,N)→ HomR(F, P )

is onto.

• whenever N → P → 0 is exact,

HomR(F,N)→ HomR(F, P )→ 0

is exact.

Proposition 4.4.3. A module F is projective iff for any short exact sequence

0→ N ′ → N → N ′′ → 0,

the sequence

0→ HomR(F,N ′)→ HomR(F,N)→ HomR(F,N ′′)→ 0

is exact.

Start proving the fundamental lemma of homological algebra.

Proof. For point 1. We inductively define maps gi : Fi → Gi. The existence
of g0 is true by projectivity of F0. For g1, recall that d lands in ker(d) since
d2 = 0. Thus we have d : G1 → ker(d) is onto, and by projectivity we have g1.
Notice that for this part we only used Fi are free and sequenceG1 → G0 → · · ·
is exact.

For point 2. Suppose we have two chain maps gi, g
′
i : Fi → Gi, and we want

to prove these are chain homotopic, i.e. we want to find hi. We do so by first
have k0 from g0 − g′0, and then have a map G1 → ker(d) be onto, then by
surjectivity.

4.5 derived functor

Say we have the category ModR of modules over R and R-linear maps. We have
various functors that take in Rmodules and produce new ones. For example

M 7→M ⊗R N, M 7→ HomR(N,M), M 7→ HomR(M,N).

THe first two are covariant and and the last is contervariant.

Problems with exactness: none of these generally preserve exact sequences.
There are special cases where exactness is preserved.

Say we have F : ModR →ModR and

0→M ′ →M →M ′′ → 0

an exact sequence. Apply F . We have

F (0)→ F (M ′)→ F (M)→ F (M ′′)→ F (0)

where F (i) : F (M ′) → F (M) and F (j) : F (M) → F (M ′′). This could fail to
be a short exact sequence in several situations:
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1. F (0) 6= 0, where 0 the R-module.

2. F (j) ◦ F (i) = F (j ◦ i) = F (0) 6= 0, where 0 the map of R-module.

Definition 4.5.1. A functor F : ModR → ModR is additive if for any f, g :
M → N we have F (f) + F (g) = F (f + g). F isR-linear if F (rf) = rF (f).

Proposition 4.5.2. If F is additive, then F (0) ∼= 0 and F (0) = 0, where the
first 0 is the R-module and the second the function.

Proof. Consider the zero map

0 : M → N,

satisfying 0 + 0 = 0 as functions. Apply F . We have F (0 + 0) = F (0) +F (0) =
F (0) and thus F (0) = 0. Then consider the zero module 0. Then F (0) = F (id0),
since 0 = F (0) and F (id0) = idF (0), and thus F (0) = {0}.

Definition 4.5.3. A short exact sequence

0→M ′ →M →M ′′ → 0 where i : M ′ →M,J : M →M ′′

is split if any of the following equivalent statements hold.

1. There exists a map of R-module s : M ′′ →M such that

j ◦ s = idM ′′ .

2. There exists a map r : M →M ′ such that

r ◦ i = idM ′ .

3. There exists an isomorphism φ : M →M ′ ⊕M ′′ such that

φ(i(x)) = (x, 0) for x ∈M ′,

and
j(φ−1(x, y)) = y for y ∈M ′′.

Proposition 4.5.4. If F is an additive functor then F automatically preserves
split exact sequences.

Definition 4.5.5. Derived functors take a functor F with bad exactness prop-
erties and replace it with a sequence of functors with good exactness properties.

Definition 4.5.6. Suppose F is some additive functor ModR. We define the
left-derived functor of F in the following way. Given a left R-module M , we
define (LkF )M as follows :

1. choose a free resolution

· · · → P2 → P1 → P0 →M → 0.
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2. throw away M to have a chain complex

· · · → P2 → P1 → P0 → 0.

3. Apply F level by level

· · · → F (P2)→ F (P1)→ F (P0)→ 0,

which is still a chain complex.

4. Take homology.
· · ·H3 H2 H1 H0.

We call Hi a (LiF )(M).

Proposition 4.5.7. 1. If F was right-exact, then L0F ∼= F .

2. We can make the LkF well-defined and functorial.

3. If we have a short exact sequence

0→M ′ →M →M ′′ → 0.

Then we get a long exact sequence

· · · → (L1F )(M ′)→ (L1F )(M)→ (L1F )(M ′′)→ (L0F )(M ′)→ (L0F )(M)→ (L0F )(M ′′)→ 0.

4. The LkF are additive. If F was R-linear then LkF are R-linear.

5. (LkF )(M) = 0 if M is free k > 0.

Example 4.5.8. If F (M) = M ⊗R N , then (LkF )(M) = TorRk (M,N).

Why do we get this and how does it work?

If we choose two free resolutions, why do we get the same answer?

Proposition 4.5.9. For any f : M → N and resolutions P. →M and Q. → N ,
there is a well-defined map

f∗ : (LkF )(M,P.)→ (LkF )(W,Q.).

Proposition 4.5.10. 1. Given id : M →M , then

id∗ : (LkF )(M,P )→ (LkF )(M,P )

is the identity map.

2.
(g ◦ f)∗ = g∗ ◦ f∗.

3.
(f + g)∗ = (f)∗ + (g)∗.

4.
r(f∗) = (rf)∗ r ∈ R.
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Proposition 4.5.11. Derived functors are independent of the resolution cho-
sen. In other words

(LkF )(M,P ) ∼= (LkF )(M,Q).

Proposition 4.5.12. LkF is a functor.

Properties of the derived functor of F :

1. If M is a free module, then

(L0F )(M) ∼= F (M) (LkF )(M) ∼= 0 k > 0.

2. If
0→M ′ →M →M ′′ → 0

is an exact sequence then there exits a long exact sequence

· · · → L1F (M ′)→ L1F (M)→ L1F (M ′′)→ L0F (M ′)→ L0F (M)→ L0F (M ′′)→ 0.

Lemma 4.5.13 (Horseshoe Lemma). Given

0

· · · P ′1 P ′0 A′ 0

A

· · · P ′′1 P ′′0 A′′ 0

0

where the column is exact and the rows are resolutions, then it could be completed
into a commutative diagram

0 0 0

· · · P ′1 P ′0 A′ 0

· · · P1 P0 A 0

· · · P ′′1 P ′′0 A′′ 0

0 0 0
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Once we have the Horseshoe lemma, we show that Proposition 4.5.12.2 is true.
Given

0→M ′′ →M →M ′′ → 0,

we choose resolutions P ′. → M ′ and P ′′. → M ′′, and then apply horseshoe.
Throw away modules. Then apply F , and we claim the rows are still exact.

Proposition 4.5.14. Suppose we have two columns of chain complexes

· · · · · · · · ·

0 C ′n Cn C ′′n 0

0 C ′n−1 Cn−1 C ′′n−1 0

· · · · · · · · ·

i j

i j
.

THen there exists a long exact sequence

· · · → Hn(C ′)→ Hn(C)→ Hn(C ′′)→ Hn−1(C ′)→ Hn−1(C)→ Hn−1(C ′′)→ · · · .

Proof. We first define an operator ∂. Suppose we have [α] ∈ Hk(C ′′), since j is
onto, we know α = j(β). Since d(β) ∈ Ck−1,

j(d(β)) = d(j(β)) = d(α) = 0.

and d(β) ∈ ker(j) = Im(i) by exactness, and d(β) = i(γ) for some γ. We define

∂[α] := [γ] ∈ Hk−1(C ′).

Theorem 4.5.15. The following is isomorphic.

•
(M ⊗R N) [U−1].

• (
M ⊗R N [U−1]

)
.

• (
M [U−1]⊗R N [U−1]

)
.

• (
M [U−1]⊗R[U−1] N [U−1]

)
.
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