Combinatorial Theory

December 1, 2023

Contents

1 Chapter 1 1
1.1 Permutations, Subsets, Multisets 1
1.2 Generating Functions 3
1.3 Stirling Numbers 5
1.4 Twelve Fold Way 7
1.5 Integer Partitions 7
1.6 Permutation Statistics 7
1.7 Euler's Pentagonal Number Theorem 8
2 8
2.1 Ferrers Boards 8
2.2 Lindström-Gessel-Viennot lemma 9
2.3 Matrix Tree Theorem for Directed Graphs 10
2.4 Rational Generating Functions and Linear Recursions 11
2.5 12
2.6 Chromatic polynomials 12
3 Poset 12
3.1 lattice 12
3.2 Mobius 13

1 Chapter 1

1.1 Permutations, Subsets, Multisets

Example 1.1.1. Suppose n people give their n hats to a hat check. Let $g(n)$ be the number ways hats could be given back so no person receives their own hat.

Answer.

$$
g(n)=\sum_{i=0}^{n} \frac{(-1)^{i} n!}{i!}
$$

Example 1.1.2. Let $h(n)$ be the number of domino tilings of a $2 \times n$ rectangle using 2×1 rectangles.

Answer. 1. For all $n \geq 3, h(n)=h(n-1)+h\left(n_{2}\right)$.
2. Using rational generating function associated to linear recurrence relations:

$$
h(n)=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right)
$$

Definition 1.1.3. Let S be a finite set. A k-permutation of S is a sequence $\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ as long as $k \leq|s|$.

The number of k-permutation of $[n]$ is

$$
n(n-1) \cdots(n-k+1)=\frac{n!}{(n-k)!}, \quad \text { denoted by }(n)_{k} \text { or falling factorial. }
$$

Definition 1.1.4. Let $\binom{n}{k}$ denote the number of subsets of $[n]$ of size k.
Theorem 1.1.5 (Sagan 1.3.2).

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}=\frac{(n)_{k}}{k!} .
$$

Theorem 1.1.6 (Sagan 1.3.3). We have
1.

$$
\binom{0}{0}=1 \quad\binom{0}{k}=0 .
$$

2.

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

3.

$$
\binom{n}{k}=\binom{n}{n-k}
$$

4.

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

5.

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}= \begin{cases}1, & n=0 \\ 0, & n \geq 1\end{cases}
$$

1.2 Generating Functions

Given a numerical sequence

$$
a_{0}, a_{1}, a_{2}, a_{3}, \ldots
$$

The ordinary generating function is

$$
A(x)=\sum_{n \geq 0} a_{n} x^{n} .
$$

Note: $k[[x]]$ is a local ring.
Claim: $A(x)$ is invertible if and only if $a_{0} \neq 0$.
Let

$$
A_{m}(x)=\sum_{n=0}^{m} x^{n} .
$$

Then

$$
A(x)(1-x)=\lim _{m \rightarrow \infty} A_{m}(x)(1-x)=1
$$

Two generating functions are the same if they converge to each other.
Theorem 1.2.1 (Binomial Theorem).

$$
\sum_{k \geq 0}\binom{n}{k} x^{k}=\sum_{k=0}^{n}\binom{n}{k} x^{k}=(1+x)^{n}
$$

We first do some disambiguating. We use multivariables instead of just one.

$$
\begin{aligned}
\left(1+x_{1}\right)\left(1+x_{2}\right) \cdots\left(1+x_{n}\right) & =\sum_{1 \leq i_{1}<i_{2} \cdots i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} \\
& =\sum_{T \subseteq[n]} \prod_{i \in T} x_{i} \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{k}
\end{aligned}
$$

Definition 1.2.2. Let α be any complex number, k non-negative integer. We define

$$
\binom{\alpha}{k}=\frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)}{k!} .
$$

Consider the genreating function of $\binom{-3}{k}$.

$$
\binom{-3}{0}=1,\binom{-3}{1}=-3,\binom{-3}{2}=6,\binom{-3}{3}=-10, \ldots .
$$

First note that

$$
\sum_{n \geq 0}\binom{-3}{n} x^{n}=\sum_{n \geq 0}(-1)^{n} \frac{(n+2)(n+1)}{2} x^{n}
$$

Then do some differenciation to $\frac{1}{1-x}$ we'll eventually be

$$
(1+x)^{-3} .
$$

Theorem 1.2.3 (Generalized Binomial Theorem).

$$
\sum_{k \geq 0}\binom{\alpha}{k} x^{k}=(1+x)^{\alpha}
$$

This could be proved/shown by doing taylor series expansions.
Definition 1.2.4. n multichoose k is the number of ways of choosing a multiset from $[n]$ of size k. Denoted by

$$
\left(\binom{n}{k}\right) .
$$

Example 1.2.5.

$$
\left(\binom{3}{2}\right)=\#\{11,12,13,22,23,33\}=6
$$

Theorem 1.2.6.

$$
\left(\binom{n}{k}\right)=\binom{n+k-1}{k} .
$$

Theorem 1.2.7.

$$
\sum_{k \geq 0}\left(\binom{n}{k}\right) x^{k}=(1-x)^{-n} \quad \text { or } \quad\left(\frac{1}{1-x}\right)^{n}
$$

Recall $h(n)$ is the number of tilings of a $2 \times n$ rectangle.

$$
\begin{aligned}
h(n) & =\sum_{k=0}^{\frac{n}{2}}\binom{n-k}{k} \\
H(x) & =\sum_{n \geq 0} h(n) x^{n} \\
H(x) & =\frac{1}{1-x-x^{2}}
\end{aligned}
$$

Example 1.1.13, 1.1.15 from Stanely.
Definition 1.2.8. A composition of $[n]$ is an ordered sum of positive integers that sum to n. k-composition has exactly k parts.

The number of k-compositions of $[n]$ is $\binom{n-1}{k-1}$ and the number of compositions is 2^{n-1}.

Definition 1.2.9. Multinomial coefficients are

$$
\binom{n}{a_{1}, a_{2}, \ldots, a_{m}}=\frac{n!}{a_{1}!a_{2}!\cdots a_{m}!}=\binom{n}{a_{1}}\binom{n-a_{1}}{a_{2}} \cdots\binom{n-a_{1}-\cdots-a_{m-1}}{a_{m}}
$$

Definition 1.2.10. A permutation written in cycle notation:

1. each cycle has the largest element first
2. cycles arranged in increasing order by 1-st element.

Definition 1.2.11. Given $w \in S_{n}$, let $c_{i}(w)$ be the number of i-cycles in w. We define cycle type of w to be $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$.

Proposition 1.2.12. The number of permutations in S_{n} with cycle type $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is edqual to

$$
\frac{n!}{1^{c_{1}} c_{1}!2^{c_{2}} c_{2}!\cdots n^{c_{n}} c_{n}!}
$$

Definition 1.2.13. We define cycle index polynomial of S_{n} to be

$$
Z_{n}\left(t_{1}, \ldots, t_{n}\right):=\frac{1}{n!} \sum_{w \in S_{n}} t^{\operatorname{type}(w)}
$$

Theorem 1.2.14.

$$
\sum_{n \geq 0} z_{n} x^{n}=\exp \left(t_{1} x+t_{2} \frac{x^{2}}{2}+\cdots\right)=\exp \left(\sum_{n \geq 1} t_{n} \frac{x^{n}}{n}\right) .
$$

1.3 Stirling Numbers

Stanely 1.3, 1.9
Segan 1.4, 1.5
Recall

$$
z_{n}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\frac{1}{n!} \sum_{w \in S_{n}} t^{\operatorname{type}(w)}
$$

Definition 1.3.1. Let $c(n, k)$ be the number of permutations w of S_{n} with exactly k cycles.

Proposition 1.3.2 (Prop 1.3.7).

$$
\sum_{k=0}^{n} c(n, k) t^{k}=t(t+1)(t+2) \cdots(t+n-1)
$$

Proof.

$$
\begin{aligned}
\sum_{n=0}\left(\sum_{k=0}^{n} c(n, k) t^{k}\right) \frac{x^{n}}{n!} & =\exp \left(t \sum_{n \geq 1} \frac{x^{n}}{n}\right) \\
& =\exp \left(t \log \left(\frac{1}{1-x}\right)\right) \\
& =\exp \left(\log (1-x)^{-t}\right) \\
& =(1-x)^{-t} \\
& =\sum_{n \geq 0}(-1)^{n}\binom{-t}{n} x^{n} \\
& -\sum_{n \geq 0} \frac{t(t+1)(t+2) \cdots(t+n-1) x^{n}}{n!}
\end{aligned}
$$

Lemma 1.3.3 (Lem 1.3.6). The $c(n, k)$'s staisfy the recurrence

$$
c(n, k)=(n-1) c(n-1, k)+c(n-1, k-1)
$$

for $n, k \geq 1$.
Proof. Building up an permutation. Build one in S_{n} using one in S_{n-1}.

1. Our perm $w \in S_{n}$ has n as a fixed point: has (n) as a 1-cycle. Build the rest of w by any p ermutation of S_{n-1} with $(k-1)$ cycles.
2. Our permutation $w \in S_{n}$ has element n in a cycle of length ≥ 2. Build by drawing diagraph of a perm on S_{n-1} and changing one arrow.

Definition 1.3.4. We define the stirling number of first kind to be

$$
s(n, k)=(-1)^{n-k} c(n, k) .
$$

Definition 1.3.5. We define the stirling number of second kind to be

$$
s(n, k)=\text { number of set of partition of }[n] \text { into } k \text { blocks. }
$$

Theorem 1.3.6 (Thm 1.4.2 Segan).

$$
s(0, k)=\delta_{0, k}= \begin{cases}1, & k=0 \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
s(n, k)=s(n-1, k)+k s(n-1, k-1) \text { for } n, k \geq 1 .
$$

Definition 1.3.7. Let $B(n)$ be the number of set partitions of $[n]$ regardless of the number of blocks.

$$
B(n)=\sum_{k=1}^{n} s(n, k)
$$

Theorem 1.3.8 (Theorem 1.4.1). $B(n)$ is defined by $B(0)=1, B(n)=\sum_{k=1}^{n-1}\binom{n-1}{k-1} B(n-$ k) for $n \geq 1$.

1.4 Twelve Fold Way

Stanely 1.9

1.5 Integer Partitions

Let lowercase $p(n)$ equals the number of Partitions of size n. Let $p(n, k)$ be the number of partitions of n with $\leq k$ parts, which Stanley denotes as $p_{k}(n)$.

Theorem 1.5.1 (Theorem 1.6.2). $p(n, k)$ defined by

$$
p(0, k)=\left\{\begin{array}{ll}
0, & k<0 \\
1, & k \geq 0
\end{array} \quad \text { and } \quad p(n, k)=p(n-k, k)+p(n, k-1) .\right.
$$

1.6 Permutation Statistics

Stanley 1.3-1.4 Sagan 3.2
Theorem 1.6.1 (Sagan Theorem 3.2.1).

$$
\sum_{w \in S_{n}} q^{i n v(w)}=(1)(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+q^{2}+\cdots+q^{n-1}\right)=[n]_{q}!.
$$

Definition 1.6.2. The inversion table $I(w)$ for a permutation $W \in S_{n}$ is

$$
I(w)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$

such that b_{i} is the number of (j, i) such that $i<j, w^{-1}(j)<w^{-1}(i)$.
Proposition 1.6.3 (Cor 1.3.13).

$$
\sum_{w \in S_{n}} q^{i n v(w)}=\sum_{b_{1}=0}^{n-1} \sum_{b_{2}=0}^{n-2} \cdots \sum_{b_{n-1}=0}^{1} \sum_{b_{n}=0}^{0} q^{b_{1}+b_{2}+\cdots+b_{n}}
$$

This also equivalent to

$$
\sum_{w \in S_{n}} q^{i n v(w)}=\left(\sum_{b_{1}=0}^{n-1} q^{b_{1}}\right)\left(\sum_{b_{2}=0}^{n-2} q^{b_{2}}\right) \cdots\left(\sum_{b_{n}=0}^{0} q^{b_{n}}\right)=[n]_{q}[n-1]_{q} \cdots[2]_{q}[1]_{q} .
$$

Definition 1.6.4. We say descents of w as i such that $w_{i}>w_{i+1}$.
Definition 1.6.5. We say major index of w as

$$
\operatorname{maj}(w)=\sum_{i \in \operatorname{Des}(w)} i
$$

Theorem 1.6.6 (Sagan Thm 3.2.2).

$$
\sum_{w \in S_{n}} q^{\operatorname{maj}(w)}=[n]_{q}!.
$$

Definition 1.6.7. Given a permutation w, we define $\operatorname{des}(w)$ to be the number of descents of w. The generating function is

$$
A_{n}(x):=\sum_{w \in S_{n}} x^{1+\operatorname{des}(w)}
$$

Definition 1.6.8. exceedance of a permutation is

$$
\operatorname{exc}(w):=\{i \mid i<w(i)\}
$$

and weak exceedance is

$$
w \operatorname{exc}(w):=\{i \mid i \leq w(i)\} .
$$

Proposition 1.6.9 (Sagan 4.2.3).

$$
A_{n}(x)=\sum_{w \in S_{n}} x^{1+e x c(w)}=\sum_{w \in S_{n}} x^{w e x c(w)}
$$

Theorem 1.6.10 (3.2.6 Sagan). If V is a vector space over \mathbb{F}_{q} where $q=p^{k}$ for a prime p, of dimension n, then then number of k-dimensional subspaces of V is $\binom{n}{k}_{q=p^{k}}$.

1.7 Euler's Pentagonal Number Theorem

Theorem 1.7.1.

$$
\prod_{k \geq 1}\left(1-x^{k}\right)=1+\sum_{n \geq 1}(-1)^{n} x^{\frac{n(3 n-1)}{2}}+\sum_{n \geq 1}(-1)^{n} x^{\frac{n(3 n+1)}{2}}
$$

Proof. See Stanley Page 76.

2

2.1 Ferrers Boards

Theorem 2.1.1 (Stanley Thm 2.4.1). Let $\sum r_{k} x^{k}$ be the rook polynomial of the Ferrers board B of shape $\left(b_{1}, \ldots, b_{m}\right)$. Set $s_{i}=b_{i}-i+1$. Then

$$
\sum_{k} r_{k} \cdot(x)_{m-k}=\prod_{i=1}^{m}\left(x+s_{i}\right)
$$

Corollary 2.1.2 (Stanley Cor 2.4.2). Let B be the triangular board (or staircase) of shape $(0,1,2, \ldots, m-1)$. Then $r_{k}=S(m, m-k)$, the $2 n d$ stirling number, the number of set partitions of $[m]$ into $(m-k)$ blocks.

Sagan sec 2.2 and 2.4
Definition 2.1.3. Given a set S, a function $f \rightarrow f$ is an involution iff $f \circ f=$ id $: S \rightarrow S$.

Definition 2.1.4. $f: S \rightarrow S$ is sign-reversing involution if $\operatorname{sgn}(f(s))=-\operatorname{sgn}(s)$ unless s is a fixed point.

Then

$$
\sum_{s \in S} \operatorname{sgn}(s)=\sum_{s \in F i x(f)} \operatorname{sgn}(s) .
$$

Section 2.4, Andre's reflection principle.

2.2 Lindström-Gessel-Viennot lemma

Given an $n \times n$ matrix $M=\left(m_{i j}\right)$. We can represent it in a directed weighted and bipartite graph with vertices A_{1}, \ldots, A_{n} and B_{1}, \ldots, B_{n}, and edges $A_{i} \rightarrow B_{j}$ with weight $m_{i j}$.

Definition 2.2.1. A path in a graph is a sequence $v_{1} e_{1} v_{2} e_{2} \cdots e_{n} v_{n}$.
The goal is to give a combinatorial interpretation for matrix determinant in terms of these graphs.

Definition 2.2.2. The determinant of a matrix M is

$$
\operatorname{det}(M)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) m_{1 \sigma(1)} \cdots m_{n \sigma(n)} .
$$

Recall $\operatorname{sgn}(\sigma)=(-1)^{\# i n v(\sigma)}$.
A path system \mathcal{P} with permutation σ in a graph G is a collection of paths

$$
P_{i}: A_{i} \rightarrow B_{\sigma(i)}
$$

We say \mathcal{P} is vertex disjoint if distinct paths don't share vertices.
A path system \mathcal{P} has weights

$$
w(\mathcal{P})=\prod w\left(P_{i}\right) .
$$

Now we have an alternative definition for determinant:

$$
\operatorname{det}(M)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) w\left(\mathcal{P}_{\sigma}\right)
$$

Proposition 2.2.3.

$$
\operatorname{det}(M)=\operatorname{det}\left(M^{T}\right)
$$

We could have a graph-based proof for this familiar statement from linear algebra.

Proof. Notice that $\operatorname{sgn}(\sigma)=\operatorname{sgn}\left(\sigma^{-1}\right)$.

Let $G=(V, E)$ be a finite acyclic directed graph. Note that G is acyclic means that there are finitely many directed paths between any 2 vertices.

We'll give each edge e a weight $w(e)$. Let P be a directed path from A to B, then the weight of P is the product of weights of edges in P.
Suppose $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ and $\mathcal{B}=\left\{B_{1}, \ldots, B_{n}\right\}$ are two subsets of V. They don't have to be disjoint.

To \mathcal{A}, \mathcal{B}, there is an associated path matrix $M=\left(m_{i j}\right)$ where

$$
m_{i j}=\sum_{P: A_{i} \rightarrow B_{j}} w(P) .
$$

We denote $V D$ as the family of vertex disjoint path systems.
Lemma 2.2.4 (LGV Lemma).

$$
\operatorname{det} M=\sum_{\mathcal{P} \in V D} \operatorname{sgn}(\mathcal{P}) w(\mathcal{P})
$$

A spanning tree in G is a connected acyclic subgraph using all vertices in G.
We define Laplacian matrix of a graph G as a matrix $L(G)$ whose i-row j column element is negative number of edges from v_{i} to v_{j} if $i \neq j$, the degree v_{i} if otherwise.

Theorem 2.2.5 (Matrix Tree Theorem (Kirchoff's)). Let $G=(V, E)$ be an undirected graph first. The absolute value of the determinant of the reduced Laplacian matrix (crossed out one row / one column) $L_{0}(G)$ equals to the number of spanning trees in G, which equals to connected acyclic subgraphs touching every vertex of G.

Claim

$$
\operatorname{det} L(G)=0
$$

where it's unreduced.

2.3 Matrix Tree Theorem for Directed Graphs

When G is directed, the definition of Laplacian matrix turns into: a Laplacian matrix of a directed graph G as a matrix $L(G)$ whose i-row j-column element is negative number of edges from $v_{i} \rightarrow v_{j}$ if $i \neq j$, the out-degree v_{i} if otherwise.
First notice that $L(G)$ is not symmetric. More importantly, $\operatorname{det} L_{0}(G)$ depends on vertex index of row and column deleted.

Now, we have $\operatorname{det}\left(L_{0}(G)\right)$ w.r.t. vertex v_{i} equals to the number of rooted directed spanning trees into v_{i}.
Now we will prove the Matrix Tree Theorem using Cauchy-Binet Theorem.
Theorem 2.3.1 (Cauchy-Binet THeorem). FOr $m \leq n, Q$ a $m \times n$ matrix, and R a $n \times m$ matrix, then

$$
\operatorname{det}(Q R)=\sum_{S \in\binom{[n]}{m}} \operatorname{det} Q_{[m], s} \cdot \operatorname{det} R_{s,[m]}
$$

Theorem 2.3.2 (Directed Matrix Tree Theorem).

$$
\operatorname{det} L_{0}^{o u t}(G)=\sum_{T} \mathrm{wt}(T)
$$

where L_{0} deletes the n-th row, n-th column, and T 's are in-tree rooted at vertex n.

2.4 Rational Generating Functions and Linear Recursions

Example 2.4.1. Let $a_{0}=1, a_{1}=-4$ and $a_{n}=4 a_{n-1}-4 a_{n-2}$ for $n \geq 2$. Define

$$
f(x)=\sum_{n \geq 0} a_{n} x^{n} .
$$

Then we have

$$
\begin{aligned}
f(x)-a_{0}-a_{1} x & =\sum_{n \geq 2} a_{n} x^{n} \\
f(x)-1+4 x & =4 x(f(x)-1)-4 x^{2} f(x) \\
f(x) & =\frac{1-8 x}{(1-2 x)^{2}}=\frac{4}{1-2 x}-\frac{3}{(1-2 x)^{2}}
\end{aligned}
$$

Theorem 2.4.2.

$$
\frac{1}{(1-r x)^{a}}=\sum_{n \geq 0}\binom{n+a-1}{a-1} r^{n} x^{n}
$$

Definition 2.4.3 (Segan 3.6). Let $\left(a_{n}\right), n \geq 0$ be a sequence of complex numbers. We say that the sequence satisfies a homogeneous linear recursion of degree d with constant coefficients if there is $d \in \mathbb{Z}_{+}$and constants $c_{1}, \ldots, c_{d} \in \mathbb{C}$ with $c_{d} \neq 0$ such that

$$
a_{n+d}+c_{1} a_{n+d-1}+c_{2} a_{n+d-2}+\cdots+c_{d} a_{n}=0
$$

Theorem 2.4.4. Given a sequence $\left(a_{n}\right)$ satisfied the definition above, and $d \in$ \mathbb{Z}_{+}. Let $q(x)=1+c_{1} x+c_{2} x^{2}+\cdots+c_{d} x^{d}$. TFAE

1. The sequence is homogenous with linear recursion of degree d with constant coefficients
2. The generating function $f(x)=\sum_{n \geq 0} a_{n} x^{n}$ has the form

$$
f(x)=\frac{p(x)}{q(x)}
$$

and degree $p(x)<d$.
3. We can write $a_{n}=\sum_{i=1}^{k} p_{i}(n) r_{i}^{n}$ where r_{i} are distinct non zero complex numbers satisfying

$$
q(x)=\prod_{i=1}^{k}\left(1-r_{i} x\right)^{d_{i}}
$$

And $p_{i}(n)$ is a polynomial with degree $p_{i}(n)<d_{i}$ for all i.

2.5

Theorem 2.5.1 (the BEST theorem). If G is a digraph that satisfies indeg $=$ outdeg at every vertex, then the number of Eulerian cycles equals to the number of intress rooted at v times $\prod_{w \in V}(\operatorname{outdeg}(w)-1)$!.

Definition 2.5.2. A binary de bruijn sequences of degree n is a sequence of 0 's and 1's of length 2^{n} :

$$
a_{1} a_{2} \cdots a_{2^{n}} .
$$

Looking at circular windows of length n, we see all possible binary sequences of length n.

Notice that BDBS are really Eulaerian cycles! Denote the corresponding graph as D_{n}.
Claim: eigenvalues of $L\left(D_{n}\right)$ are $0,2,2,2, \ldots, 2$ for $2^{n-1}-1$ times.
The number of binary de Bruijn sequences of degree n is

$$
\frac{1}{2^{n-1}} 2^{2^{n-1}-1}=2^{2^{n-1}-n} .
$$

Similarly, th number of k-ary dBS of degree n is

$$
k^{k^{n-1}-n} \cdot(k-1)!^{k^{n-1}}
$$

2.6 Chromatic polynomials

Let G be an undirected simple graphs (no multiple edges, no loops) Denote $G=(V, E)$.

Definition 2.6.1. A coloring of G is a map $c: V \rightarrow S$ where S is the set of colors. A coloring is proper if $c(u) \neq c(v)$ when $(u, v) \in E$.

Definition 2.6.2. The chromatic number of G, denoted by $\chi(G)$, is the minimal cardinality of S such that there's a proper coloring.

An edgeless graph has $\chi(G)=1$ and a bipartite graph has $\chi(G)=2$.

3 Poset

3.1 lattice

Proposition 3.1.1. Let L be a finite lattice. The following two conditions are equivalent.

1. L is graded, and the rank function ρ of L satisfies

$$
\rho(s)+\rho(t) \geq \rho(s \wedge t)+\rho(s \vee t)
$$

for all $s, t \in L$.
2. If s and t both cover $s \wedge t$, then $s \vee t$ covers both s and t.

A finite lattice satisfying either of the (equivalent) conditions of the previous proposition is called a finite upper semimodular lattice, or a just a finite semimodular lattice.

A finite lattice L whose dual L^{*} is semimodular is called lower semimodular. A finite lattice that is both upper and lower semimodular is called a modular lattice.

Proposition 3.1.2. A finite lattice L is modular if and only if it is graded, and its rank function ρ satisfies

$$
\rho(s)+\rho(t)=\rho(s \wedge t)+\rho(s \vee t) \text { for all } s, t \in L
$$

For any poset P, let $J(P)$ be the set of order ideals of P.
Theorem 3.1.3 (Fundamental Theorem of Finite Distributive Lattices). For any finite distributive lattice L, there is a unique poset P (up to isomorphism) such that $L \cong J(P)$.

Proposition 3.1.4 (Segan 5.3.5). We have $J(P)$ is a distributive lattice.
For $x \in L-\{\hat{0}\}$, we say x is join-irreducible if whenever $x=y \vee z$ then $y=x$ or $z=x$.

Proposition 3.1.5. In a finite lattice L,

1. $x \in L$ is join irreducible iff x covers exactly one element.
2. For any $x \in L$, if

$$
I_{x}:=\left\{r \leq_{L} x \mid r \in \operatorname{Irr}(L)\right\}
$$

then $x=\vee_{r \in I_{x}} r$.

3.2 Mobius

Definition 3.2.1. Let P be a locally finite poset with a unique minimal element $\hat{0}$. The Mobius function of P

$$
\mathcal{M}=\left\{\begin{array}{ll}
1, & x=\hat{0} \\
-\sum_{y<x} \mathcal{M}(y), & \text { otherwise }
\end{array} .\right.
$$

In more generality, for any poset P, and any choice x, z such that $x \leq_{P} z$,

$$
\mathcal{M}(x, z)= \begin{cases}1, & x=z \\ -\sum_{x \leq_{P} y \leq_{P} z} \mathcal{M}(x, y), & \text { otherwise }\end{cases}
$$

