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1 Chapter 1

1.1 Permutations, Subsets, Multisets

Example 1.1.1. Suppose n people give their n hats to a hat check. Let g(n) be
the number ways hats could be given back so no person receives their own hat.

Answer.

g(n) =

n∑
i=0

(−1)in!

i!
.

Example 1.1.2. Let h(n) be the number of domino tilings of a 2× n rectangle
using 2× 1 rectangles.
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Answer. 1. For all n ≥ 3, h(n) = h(n− 1) + h(n2).

2. Using rational generating function associated to linear recurrence rela-
tions:

h(n) =
1√
5

(1 +
√

5

2

)n+1

−

(
1−
√

5

2

)n+1
 .

Definition 1.1.3. Let S be a finite set. A k-permutation of S is a sequence
(s1, s2, . . . , sk) as long as k ≤ |s|.

The number of k-permutation of [n] is

n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
, denoted by (n)k or falling factorial.

Definition 1.1.4. Let
(
n
k

)
denote the number of subsets of [n] of size k.

Theorem 1.1.5 (Sagan 1.3.2).(
n

k

)
=

n!

(n− k)!k!
=

(n)k
k!

.

Theorem 1.1.6 (Sagan 1.3.3). We have

1. (
0

0

)
= 1

(
0

k

)
= 0.

2. (
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

3. (
n

k

)
=

(
n

n− k

)
.

4.
n∑
k=0

(
n

k

)
= 2n.

5.
n∑
k=0

(−1)k
(
n

k

)
=

{
1, n = 0

0, n ≥ 1
.
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1.2 Generating Functions

Given a numerical sequence

a0, a1, a2, a3, . . .

The ordinary generating function is

A(x) =
∑
n≥0

anx
n.

Note: k[[x]] is a local ring.

Claim: A(x) is invertible if and only if a0 6= 0.

Let

Am(x) =

m∑
n=0

xn.

Then
A(x)(1− x) = lim

m→∞
Am(x)(1− x) = 1.

Two generating functions are the same if they converge to each other.

Theorem 1.2.1 (Binomial Theorem).∑
k≥0

(
n

k

)
xk =

n∑
k=0

(
n

k

)
xk = (1 + x)n.

We first do some disambiguating. We use multivariables instead of just one.

(1 + x1)(1 + x2) · · · (1 + xn) =
∑

1≤i1<i2···ik≤n

xi1xi2 · · ·xik

=
∑
T⊆[n]

∏
i∈T

xi

=

n∑
k=0

(
n

k

)
xk

Definition 1.2.2. Let α be any complex number, k non-negative integer. We
define (

α

k

)
=
α(α− 1)(α− 2) · · · (α− k + 1)

k!
.

Consider the genreating function of
(−3
k

)
.(

−3

0

)
= 1,

(
−3

1

)
= −3,

(
−3

2

)
= 6,

(
−3

3

)
= −10, . . . .

First note that ∑
n≥0

(
−3

n

)
xn =

∑
n≥0

(−1)n
(n+ 2)(n+ 1)

2
xn.
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Then do some differenciation to 1
1−x we’ll eventually be

(1 + x)−3.

Theorem 1.2.3 (Generalized Binomial Theorem).∑
k≥0

(
α

k

)
xk = (1 + x)α.

This could be proved/shown by doing taylor series expansions.

Definition 1.2.4. n multichoose k is the number of ways of choosing a multiset
from [n] of size k. Denoted by ((

n

k

))
.

Example 1.2.5. ((
3

2

))
= # {11, 12, 13, 22, 23, 33} = 6.

Theorem 1.2.6. ((
n

k

))
=

(
n+ k − 1

k

)
.

Theorem 1.2.7.∑
k≥0

((
n

k

))
xk = (1− x)−n or

(
1

1− x

)n
.

Recall h(n) is the number of tilings of a 2× n rectangle.

h(n) =

n
2∑

k=0

(
n− k
k

)
H(x) =

∑
n≥0

h(n)xn

H(x) =
1

1− x− x2

Example 1.1.13, 1.1.15 from Stanely.

Definition 1.2.8. A composition of [n] is an ordered sum of positive integers
that sum to n. k-composition has exactly k parts.

The number of k-compositions of [n] is
(
n−1
k−1
)

and the number of compositions

is 2n−1.
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Definition 1.2.9. Multinomial coefficients are(
n

a1, a2, . . . , am

)
=

n!

a1!a2! · · · am!
=

(
n
a1

)(
n− a1
a2

)
· · ·
(
n− a1 − · · · − am−1

am

)

Definition 1.2.10. A permutation written in cycle notation:

1. each cycle has the largest element first

2. cycles arranged in increasing order by 1-st element.

Definition 1.2.11. Given w ∈ Sn, let ci(w) be the number of i-cycles in w.
We define cycle type of w to be (c1, c2, . . . , cn).

Proposition 1.2.12. The number of permutations in Sn with cycle type (c1, c2, . . . , cn)
is edqual to

n!

1c1c1!2c2c2! · · ·ncncn!
.

Definition 1.2.13. We define cycle index polynomial of Sn to be

Zn(t1, . . . , tn) :=
1

n!

∑
w∈Sn

ttype(w)

Theorem 1.2.14.

∑
n≥0

znx
n = exp(t1x+ t2

x2

2
+ · · · ) = exp

∑
n≥1

tn
xn

n

 .

1.3 Stirling Numbers

Stanely 1.3, 1.9

Segan 1.4, 1.5

Recall

zn(t1, t2, . . . , tn) =
1

n!

∑
w∈Sn

ttype(w).

Definition 1.3.1. Let c(n, k) be the number of permutations w of Sn with
exactly k cycles.

Proposition 1.3.2 (Prop 1.3.7).

n∑
k=0

c(n, k)tk = t(t+ 1)(t+ 2) · · · (t+ n− 1).
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Proof. ∑
n=0

(
n∑
k=0

c(n, k)tk

)
xn

n!
= exp(t

∑
n≥1

xn

n
)

= exp

(
t log

(
1

1− x

))
= exp

(
log(1− x)−t

)
= (1− x)−t

=
∑
n≥0

(−1)n
(
−t
n

)
xn

−
∑
n≥0

t(t+ 1)(t+ 2) · · · (t+ n− 1)xn

n!

Lemma 1.3.3 (Lem 1.3.6). The c(n, k)’s staisfy the recurrence

c(n, k) = (n− 1)c(n− 1, k) + c(n− 1, k − 1)

for n, k ≥ 1.

Proof. Building up an permutation. Build one in Sn using one in Sn−1.

1. Our perm w ∈ Sn has n as a fixed point: has (n) as a 1-cycle. Build the
rest of w by any p ermutation of Sn−1 with (k − 1) cycles.

2. Our permutation w ∈ Sn has element n in a cycle of length ≥ 2. Build by
drawing diagraph of a perm on Sn−1 and changing one arrow.

Definition 1.3.4. We define the stirling number of first kind to be

s(n, k) = (−1)n−kc(n, k).

Definition 1.3.5. We define the stirling number of second kind to be

s(n, k) = number of set of partition of [n] into kblocks.

Theorem 1.3.6 (Thm 1.4.2 Segan).

s(0, k) = δ0,k =

{
1, k = 0

0, otherwise
.

and
s(n, k) = s(n− 1, k) + ks(n− 1, k − 1) for n, k ≥ 1.

Definition 1.3.7. Let B(n) be the number of set partitions of [n] regardless of
the number of blocks.

B(n) =

n∑
k=1

s(n, k).
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Theorem 1.3.8 (Theorem 1.4.1). B(n) is defined by B(0) = 1, B(n) =
∑n−1
k=1

(
n−1
k−1
)
B(n−

k) for n ≥ 1.

1.4 Twelve Fold Way

Stanely 1.9

1.5 Integer Partitions

Let lowercase p(n) equals the number of Partitions of size n. Let p(n, k) be the
number of partitions of n with ≤ k parts, which Stanley denotes as pk(n).

Theorem 1.5.1 (Theorem 1.6.2). p(n, k) defined by

p(0, k) =

{
0, k < 0

1, k ≥ 0
and p(n, k) = p(n− k, k) + p(n, k − 1).

1.6 Permutation Statistics

Stanley 1.3-1.4 Sagan 3.2

Theorem 1.6.1 (Sagan Theorem 3.2.1).∑
w∈Sn

qinv(w) = (1)(1 + q)(1 + q + q2) · · · (1 + q + q2 + · · ·+ qn−1) = [n]q!.

Definition 1.6.2. The inversion table I(w) for a permutation W ∈ Sn is

I(w) = (b1, b2, . . . , bn),

such that bi is the number of (j, i) such that i < j, w−1(j) < w−1(i).

Proposition 1.6.3 (Cor 1.3.13).

∑
w∈Sn

qinv(w) =

n−1∑
b1=0

n−2∑
b2=0

· · ·
1∑

bn−1=0

0∑
bn=0

qb1+b2+···+bn .

This also equivalent to

∑
w∈Sn

qinv(w) =

(
n−1∑
b1=0

qb1

)(
n−2∑
b2=0

qb2

)
· · ·

(
0∑

bn=0

qbn

)
= [n]q[n− 1]q · · · [2]q[1]q.

Definition 1.6.4. We say descents of w as i such that wi > wi+1.

Definition 1.6.5. We say major index of w as

maj(w) =
∑

i∈Des(w)

i.

Theorem 1.6.6 (Sagan Thm 3.2.2).∑
w∈Sn

qmaj(w) = [n]q!.
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Definition 1.6.7. Given a permutation w, we define des(w) to be the number
of descents of w. The generating function is

An(x) :=
∑
w∈Sn

x1+des(w)

Definition 1.6.8. exceedance of a permutation is

exc(w) := {i | i < w(i)}.

and weak exceedance is

wexc(w) := {i | i ≤ w(i)}.

Proposition 1.6.9 (Sagan 4.2.3).

An(x) =
∑
w∈Sn

x1+exc(w) =
∑
w∈Sn

xwexc(w).

Theorem 1.6.10 (3.2.6 Sagan). If V is a vector space over Fq where q = pk

for a prime p, of dimension n, then then number of k-dimensional subspaces of
V is

(
n
k

)
q=pk

.

1.7 Euler’s Pentagonal Number Theorem

Theorem 1.7.1.∏
k≥1

(1− xk) = 1 +
∑
n≥1

(−1)nx
n(3n−1)

2 +
∑
n≥1

(−1)nx
n(3n+1)

2 .

Proof. See Stanley Page 76.

2

2.1 Ferrers Boards

Theorem 2.1.1 (Stanley Thm 2.4.1). Let
∑
rkx

k be the rook polynomial of the
Ferrers board B of shape (b1, . . . , bm). Set si = bi − i+ 1. Then

∑
k

rk · (x)m−k =

m∏
i=1

(x+ si) .

Corollary 2.1.2 (Stanley Cor 2.4.2). Let B be the triangular board (or stair-
case) of shape (0, 1, 2, . . . ,m − 1). Then rk = S(m,m − k), the 2nd stirling
number, the number of set partitions of [m] into (m− k) blocks.

Sagan sec 2.2 and 2.4

Definition 2.1.3. Given a set S, a function f → f is an involution iff f ◦ f =
id : S → S.
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Definition 2.1.4. f : S → S is sign-reversing involution if sgn(f(s)) = − sgn(s)
unless s is a fixed point.

Then ∑
s∈S

sgn(s) =
∑

s∈Fix(f)

sgn(s).

Section 2.4, Andre’s reflection principle.

2.2 Lindström–Gessel–Viennot lemma

Given an n× n matrix M = (mij). We can represent it in a directed weighted
and bipartite graph with vertices A1, . . . , An andB1, . . . , Bn, and edges Ai → Bj
with weight mij .

Definition 2.2.1. A path in a graph is a sequence v1e1v2e2 · · · envn.

The goal is to give a combinatorial interpretation for matrix determinant in
terms of these graphs.

Definition 2.2.2. The determinant of a matrix M is

det(M) =
∑
σ∈Sn

sgn(σ)m1σ(1) · · ·mnσ(n).

Recall sgn(σ) = (−1)#inv(σ).

A path system P with permutation σ in a graph G is a collection of paths

Pi : Ai → Bσ(i).

We say P is vertex disjoint if distinct paths don’t share vertices.

A path system P has weights

w(P) =
∏

w(Pi).

Now we have an alternative definition for determinant:

det(M) =
∑
σ∈Sn

sgn(σ)w(Pσ).

Proposition 2.2.3.
det(M) = det(MT ).

We could have a graph-based proof for this familiar statement from linear alge-
bra.

Proof. Notice that sgn(σ) = sgn(σ−1).
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Let G = (V,E) be a finite acyclic directed graph. Note that G is acyclic means
that there are finitely many directed paths between any 2 vertices.

We’ll give each edge e a weight w(e). Let P be a directed path from A to B,
then the weight of P is the product of weights of edges in P .

Suppose A = {A1, . . . , An} and B = {B1, . . . , Bn} are two subsets of V . They
don’t have to be disjoint.

To A,B, there is an associated path matrix M = (mij) where

mij =
∑

P :Ai→Bj

w(P ).

We denote V D as the family of vertex disjoint path systems.

Lemma 2.2.4 (LGV Lemma).

detM =
∑
P∈V D

sgn(P)w(P).

A spanning tree in G is a connected acyclic subgraph using all vertices in G.

We define Laplacian matrix of a graph G as a matrix L(G) whose i-row j-
column element is negative number of edges from vi to vj if i 6= j, the degree vi
if otherwise.

Theorem 2.2.5 (Matrix Tree Theorem (Kirchoff’s)). Let G = (V,E) be an
undirected graph first. The absolute value of the determinant of the reduced
Laplacian matrix (crossed out one row / one column) L0(G) equals to the num-
ber of spanning trees in G, which equals to connected acyclic subgraphs touching
every vertex of G.

Claim
detL(G) = 0.

where it’s unreduced.

2.3 Matrix Tree Theorem for Directed Graphs

When G is directed, the definition of Laplacian matrix turns into: a Laplacian
matrix of a directed graph G as a matrix L(G) whose i-row j-column element is
negative number of edges from vi → vj if i 6= j, the out-degree vi if otherwise.

First notice that L(G) is not symmetric. More importantly, detL0(G) depends
on vertex index of row and column deleted.

Now, we have det(L0(G)) w.r.t. vertex vi equals to the number of rooted di-
rected spanning trees into vi.

Now we will prove the Matrix Tree Theorem using Cauchy-Binet Theorem.

Theorem 2.3.1 (Cauchy-Binet THeorem). FOr m ≤ n, Q a m × n matrix,
and R a n×m matrix, then

det(QR) =
∑

S∈([n]
m)

detQ[m],s · detRs,[m].
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Theorem 2.3.2 (Directed Matrix Tree Theorem).

detLout0 (G) =
∑
T

wt(T ).

where L0 deletes the n-th row, n-th column, and T ’s are in-tree rooted at vertex
n.

2.4 Rational Generating Functions and Linear Recursions

Example 2.4.1. Let a0 = 1, a1 = −4 and an = 4an−1 − 4an−2 for n ≥ 2.
Define

f(x) =
∑
n≥0

anx
n.

Then we have

f(x)− a0 − a1x =
∑
n≥2

anx
n

f(x)− 1 + 4x = 4x(f(x)− 1)− 4x2f(x)

f(x) =
1− 8x

(1− 2x)2
=

4

1− 2x
− 3

(1− 2x)2

Theorem 2.4.2.
1

(1− rx)a
=
∑
n≥0

(
n+ a− 1

a− 1

)
rnxn.

Definition 2.4.3 (Segan 3.6). Let (an), n ≥ 0 be a sequence of complex num-
bers. We say that the sequence satisfies a homogeneous linear recursion of degree
d with constant coefficients if there is d ∈ Z+ and constants c1, . . . , cd ∈ C with
cd 6= 0 such that

an+d + c1an+d−1 + c2an+d−2 + · · ·+ cdan = 0.

Theorem 2.4.4. Given a sequence (an) satisfied the definition above, and d ∈
Z+. Let q(x) = 1 + c1x+ c2x

2 + · · ·+ cdx
d. TFAE

1. The sequence is homogenous with linear recursion of degree d with constant
coefficients

2. The generating function f(x) =
∑
n≥0 anx

n has the form

f(x) =
p(x)

q(x)

and degree p(x) < d.

3. We can write an =
∑k
i=1 pi(n)rni where ri are distinct non zero complex

numbers satisfying

q(x) =

k∏
i=1

(1− rix)di .

And pi(n) is a polynomial with degree pi(n) < di for all i.

11



2.5

Theorem 2.5.1 (the BEST theorem). If G is a digraph that satisfies indeg =
outdeg at every vertex, then the number of Eulerian cycles equals to the number
of intress rooted at v times

∏
w∈V (outdeg(w)− 1)!.

Definition 2.5.2. A binary de bruijn sequences of degree n is a sequence of 0’s
and 1’s of length 2n:

a1a2 · · · a2n .

Looking at circular windows of length n, we see all possible binary sequences of
length n.

Notice that BDBS are really Eulaerian cycles! Denote the corresponding graph
as Dn.

Claim: eigenvalues of L(Dn) are 0, 2, 2, 2, . . . , 2 for 2n−1 − 1 times.

The number of binary de Bruijn sequences of degree n is

1

2n−1
22

n−1−1 = 22
n−1−n.

Similarly, th number of k-ary dBS of degree n is

kk
n−1−n · (k − 1)!k

n−1

.

2.6 Chromatic polynomials

Let G be an undirected simple graphs (no multiple edges, no loops) Denote
G = (V,E).

Definition 2.6.1. A coloring of G is a map c : V → S where S is the set of
colors. A coloring is proper if c(u) 6= c(v) when (u, v) ∈ E.

Definition 2.6.2. The chromatic number ofG, denoted by χ(G), is the minimal
cardinality of S such that there’s a proper coloring.

An edgeless graph has χ(G) = 1 and a bipartite graph has χ(G) = 2.

3 Poset

3.1 lattice

Proposition 3.1.1. Let L be a finite lattice. The following two conditions are
equivalent.

1. L is graded, and the rank function ρ of L satisfies

ρ(s) + ρ(t) ≥ ρ(s ∧ t) + ρ(s ∨ t)

for all s, t ∈ L.

2. If s and t both cover s ∧ t, then s ∨ t covers both s and t.
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A finite lattice satisfying either of the (equivalent) conditions of the previous
proposition is called a finite upper semimodular lattice, or a just a finite semi-
modular lattice.

A finite lattice L whose dual L∗ is semimodular is called lower semimodular .
A finite lattice that is both upper and lower semimodular is called a modular
lattice.

Proposition 3.1.2. A finite lattice L is modular if and only if it is graded, and
its rank function ρ satisfies

ρ(s) + ρ(t) = ρ(s ∧ t) + ρ(s ∨ t) for all s, t ∈ L

For any poset P , let J(P ) be the set of order ideals of P .

Theorem 3.1.3 (Fundamental Theorem of Finite Distributive Lattices). For
any finite distributive lattice L, there is a unique poset P (up to isomorphism)
such that L ∼= J(P ).

Proposition 3.1.4 (Segan 5.3.5). We have J(P ) is a distributive lattice.

For x ∈ L − {0̂}, we say x is join-irreducible if whenever x = y ∨ z then y = x
or z = x.

Proposition 3.1.5. In a finite lattice L,

1. x ∈ L is join irreducible iff x covers exactly one element.

2. For any x ∈ L, if
Ix := {r ≤L x | r ∈ Irr(L)} ,

then x = ∨r∈Ixr.

3.2 Mobius

Definition 3.2.1. Let P be a locally finite poset with a unique minimal element
0̂. The Mobius function of P

M =

{
1, x = 0̂

−
∑
y<xM(y), otherwise

.

In more generality, for any poset P , and any choice x, z such that x ≤P z,

M(x, z) =

{
1, x = z

−
∑
x≤P y≤P z

M(x, y), otherwise
.
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