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1 Chapter 1

1.1 Permutations, Subsets, Multisets

Example 1.1.1. Suppose n people give their n hats to a hat check. Let g(n) be
the number ways hats could be given back so no person receives their own hat.

Answer.
n

o(n) = Z (—l)in!.

7!
=0

O

Example 1.1.2. Let h(n) be the number of domino tilings of a 2 X n rectangle
using 2 X 1 rectangles.



Answer. 1. For all n > 3, h(n) = h(n — 1) + h(ns).

2. Using rational generating function associated to linear recurrence rela-

tions:
1 1+\/5 n+1 1_\/5 n+1
o= (7)) - (%)

Definition 1.1.3. Let S be a finite set. A k-permutation of S is a sequence
(81,82,...,8k) as long as k < |s].

O

The number of k-permutation of [n] is

n!

(n— k)’

nn—1)---(n—k+1)= denoted by (n);, or falling factorial.

Definition 1.1.4. Let (}) denote the number of subsets of [n] of size k.

Theorem 1.1.5 (Sagan 1.3.2).

(Z) G nl!c)!k! - (Zk

Theorem 1.1.6 (Sagan 1.3.3). We have

‘ )+ ()
2’ (-G (7
3’ (-
4’ (1)



1.2 Generating Functions
Given a numerical sequence
ap, a1,02,0as3, - .-

The ordinary generating function is

A(z) = Z anx"”.

n>0

Note: k[[x]] is a local ring.
Claim: A(z) is invertible if and only if ag # 0.

Let .
A () = Z x".
n=0
Then

A(z)(1 —z)= lim A, (z)(1 —x)=1.

m—0o0
Two generating functions are the same if they converge to each other.

Theorem 1.2.1 (Binomial Theorem).

n

;;; (Z)xk = (Z):gk = (1+a)"

k=0

We first do some disambiguating. We use multivariables instead of just one.

Itz +m) (U ta) = Y wizy-o,

1<iy<ig--ip<n

- > =

TC[n]i€T

n

> ()

k

Definition 1.2.2. Let o be any complex number, k£ non-negative integer. We

define (a>a(a1)(a2)...(ak+1)

k k!

Consider the genreating function of (7,@3)

(3) =1 (7)== (3) =0 (7)) =0

First note that

Z (n?))xn _ Z(_l)n (n+ 2)2(n + 1>x".

n>0 n>0



Then do some differenciation to ﬁ we’ll eventually be
(1+42z)73

Theorem 1.2.3 (Generalized Binomial Theorem).

3y (Z)ﬁ = (1+2)"

k>0

This could be proved/shown by doing taylor series expansions.

Definition 1.2.4. n multichoose k is the number of ways of choosing a multiset

from [n] of size k. Denoted by
n
) )

((2)) = #{11,12,13,22,23,33} = 6.
n\\ [(n+k-1
()=
Theorem 1.2.7.

1 n
Z <(Z>> F=1-z)"" or <1 —a:) .
k>0
Recall h(n) is the number of tilings of a 2 X n rectangle.
<” : )
h

1
1—2—22

Example 1.2.5.

Theorem 1.2.6.

T
3% M Il MN@

H(x) =

Example 1.1.13, 1.1.15 from Stanely.

Definition 1.2.8. A composition of [n] is an ordered sum of positive integers
that sum to n. k-composition has exactly k parts.

The number of k-compositions of [n] is (Z 1) and the number of compositions
is 271,



Definition 1.2.9. Multinomial coefficients are

n _ n! ([ n n—a n—ay—- - — ap-1
1,02, ... ,0mn arlas! - ay,! aq as am

Definition 1.2.10. A permutation written in cycle notation:
1. each cycle has the largest element first

2. cycles arranged in increasing order by 1-st element.

Definition 1.2.11. Given w € S, let ¢;(w) be the number of i-cycles in w.
We define cycle type of w to be (¢1,c¢a,...,cn).

Proposition 1.2.12. The number of permutations in S,, with cycle type (c1,ca,. ..

is edqual to
n!

1e1cpl2¢2¢y! - - - mong, !

Definition 1.2.13. We define cycle index polynomial of S, to be

1
Zn(ty, ... ty) = ] Z ttype(w)

T wes,
Theorem 1.2.14.
2 n
T T
Zznx”:exp(t1x+t2?+---)zexp Zt”;
n>0 n>1

1.3 Stirling Numbers
Stanely 1.3, 1.9
Segan 1.4, 1.5

Recall

1
Zn(tl,tQ, e 7tn) — 7' Z ttype(u))'
n: wes,

Definition 1.3.1. Let ¢(n, k) be the number of permutations w of S,, with
exactly k cycles.

Proposition 1.3.2 (Prop 1.3.7).

n

> eln k)t =t(t+1)(t+2) - (t+n—1).
k=0

,Cn)

)



Proof.

=(1-x)"
=Sl

n!

Lemma 1.3.3 (Lem 1.3.6). The ¢(n, k)’s staisfy the recurrence
c(n,k)=(n—1Decn—1,k)+cn—1,k—1)

forn, k> 1.

Proof. Building up an permutation. Build one in S,, using one in S,,_1.

1. Our perm w € S, has n as a fixed point: has (n) as a 1-cycle. Build the
rest of w by any p ermutation of S,,_1 with (k — 1) cycles.

2. Our permutation w € S, has element n in a cycle of length > 2. Build by
drawing diagraph of a perm on S,,_; and changing one arrow.

O

Definition 1.3.4. We define the stirling number of first kind to be
s(n, k) = (=1)" Fe(n, k).

Definition 1.3.5. We define the stirling number of second kind to be

s(n, k) = number of set of partition of [n] into kblocks.

Theorem 1.3.6 (Thm 1.4.2 Segan).

1, k=0

0, otherwise

S(O,k) = 507]6 = {

and
s(n,k)=s(n—1,k)+ks(n—1,k—1) forn, k> 1.

Definition 1.3.7. Let 3(n) be the number of set partitions of [n] regardless of
the number of blocks.

B(n) = Z s(n, k).

n
k=1



Theorem 1.3.8 (Theorem 1.4.1). B(n) is defined by B(0) =1, B(n) = >3] (r1
k) forn > 1.

1.4 Twelve Fold Way
Stanely 1.9

1.5 Integer Partitions

Let lowercase p(n) equals the number of Partitions of size n. Let p(n, k) be the
number of partitions of n with < k parts, which Stanley denotes as py(n).

Theorem 1.5.1 (Theorem 1.6.2). p(n,k) defined by

0, k<O

L k>0 and p(n, k) =p(n—k,k)+p(n,k—1).

p(O, k) = {

1.6 Permutation Statistics

Stanley 1.3-1.4 Sagan 3.2

Theorem 1.6.1 (Sagan Theorem 3.2.1).

Da™ =M+ +a+¢") - (L+g+g ++q"") = [n]!.
weSy

Definition 1.6.2. The inversion table I(w) for a permutation W € S, is
I(w) = (bl, bg, ey bn),
such that b; is the number of (j,4) such that i < j, w™1(j) < w=(3).

Proposition 1.6.3 (Cor 1.3.13).

n—1 n—2 1 0
E qinv(w) = E E R E E qbl+b2+"'+bn.
’LUGSn b1=0 b2=0 bn71=0 bn=0

This also equivalent to
n—1 n—2 0
> g = (Z q“) (Z qb2> (Z q“) = [nlgln — g+ 24 [1],-
weS, b1=0 b2=0 bn=0
Definition 1.6.4. We say descents of w as ¢ such that w; > w; 1.

Definition 1.6.5. We say major index of w as

maj(w) = Z i.

i€Des(w)
Theorem 1.6.6 (Sagan Thm 3.2.2).

Z qmaj(w) = [n]y!-

wESy



Definition 1.6.7. Given a permutation w, we define des(w) to be the number
of descents of w. The generating function is

An(:r) — Z x1+des(w)

wES,

Definition 1.6.8. czceedance of a permutation is
exc(w) :=={i|i<w(i)}.
and weak exceedance is

wexe(w) = {i | i < w(i)}.

Proposition 1.6.9 (Sagan 4.2.3).

An(m) = Z ml-i-ea:c(w) — Z xwea;c(w).

weSy wES,

Theorem 1.6.10 (3.2.6 Sagan). If V is a vector space over F, where q¢ = p*
for a prime p, of dimension n, then then number of k-dimensional subspaces of

V is (Z)q:pk.
1.7 Euler’s Pentagonal Number Theorem
Theorem 1.7.1.

[T - =14 3™ 4 (a5

k>1 n>1 n>1

Proof. See Stanley Page 76. O

2

2.1 Ferrers Boards

Theorem 2.1.1 (Stanley Thm 2.4.1). Let Y rxz* be the rook polynomial of the
Ferrers board B of shape (by,...,by). Set s; =b; —i+ 1. Then

m

Zrk ()t = H (z +s;).
k

i=1

Corollary 2.1.2 (Stanley Cor 2.4.2). Let B be the triangular board (or stair-
case) of shape (0,1,2,...,m —1). Then rp, = S(m,m — k), the 2nd stirling
number, the number of set partitions of [m] into (m — k) blocks.

Sagan sec 2.2 and 2.4

Definition 2.1.3. Given a set S, a function f — f is an inwvolution iff fo f =
id: S— 5.



Definition 2.1.4. f:S — Sis sign-reversing involution if sgn(f(s)) = — sgn(s)
unless s is a fixed point.

Then

ngn(s): Z sgn(s).

ses seFix(f)

Section 2.4, Andre’s reflection principle.

2.2 Lindstrom—Gessel-Viennot lemma

Given an n x n matrix M = (m,;). We can represent it in a directed weighted
and bipartite graph with vertices Ay, ..., A, and By, ..., By, and edges A; — B;
with weight my;.

Definition 2.2.1. A path in a graph is a sequence vie1v2€3 « - + €,Uy,.

The goal is to give a combinatorial interpretation for matrix determinant in
terms of these graphs.

Definition 2.2.2. The determinant of a matrix M is

det(M) = Z Sgn<a)mla(1)  Mipo(n)-
oc€Sy

Recall sgn(o) = (—1)#nv(@),
A path system P with permutation ¢ in a graph G is a collection of paths
P : Aj = By

We say P is vertex disjoint if distinct paths don’t share vertices.

A path system P has weights
w(P) = Hw(Pz)

Now we have an alternative definition for determinant:

det(M) = Z sgn(o)w(Py).

oceS,

Proposition 2.2.3.
det(M) = det(M7T).

We could have a graph-based proof for this familiar statement from linear alge-
bra.

Proof. Notice that sgn(c) = sgn(c1). O



Let G = (V, E) be a finite acyclic directed graph. Note that G is acyclic means
that there are finitely many directed paths between any 2 vertices.

We'll give each edge e a weight w(e). Let P be a directed path from A to B,
then the weight of P is the product of weights of edges in P.

Suppose A = {4;,...,A,} and B = {By,...,B,} are two subsets of V. They
don’t have to be disjoint.

To A, B, there is an associated path matrix M = (m;;) where

mi; = Z ’LU(P)

PA1 *}Bj
We denote V' D as the family of vertex disjoint path systems.

Lemma 2.2.4 (LGV Lemma).

det M = Z sgn(P)w(P).
PeVD

A spanning tree in G is a connected acyclic subgraph using all vertices in G.

We define Laplacian matriz of a graph G as a matrix L(G) whose i-row j-
column element is negative number of edges from v; to v; if i # j, the degree v;
if otherwise.

Theorem 2.2.5 (Matrix Tree Theorem (Kirchoff’s)). Let G = (V, E) be an
undirected graph first. The absolute value of the determinant of the reduced
Laplacian matriz (crossed out one row / one column) Lo(G) equals to the num-
ber of spanning trees in G, which equals to connected acyclic subgraphs touching
every vertex of G.

Claim
det L(G) = 0.

where it’s unreduced.

2.3 Matrix Tree Theorem for Directed Graphs

When G is directed, the definition of Laplacian matrix turns into: a Laplacian
matriz of a directed graph G as a matrix L(G) whose i-row j-column element is
negative number of edges from v; — v; if ¢ # j, the out-degree v; if otherwise.

First notice that L(G) is not symmetric. More importantly, det Lo(G) depends
on vertex index of row and column deleted.

Now, we have det(Lo(G)) w.r.t. vertex v; equals to the number of rooted di-
rected spanning trees into v;.

Now we will prove the Matrix Tree Theorem using Cauchy-Binet Theorem.

Theorem 2.3.1 (Cauchy-Binet THeorem). FOr m < n, QQ a m X n matriz,
and R a n x m matriz, then

det(QR) = > det Qs - det Ry ().
Se([:;])

10



Theorem 2.3.2 (Directed Matrix Tree Theorem).

det L§"(G) =Y wi(T).

where Lg deletes the n-th row, n-th column, and T ’s are in-tree rooted at vertex
n.

2.4 Rational Generating Functions and Linear Recursions

Example 2.4.1. Let ag = 1,a1 = —4 and a, = 4an_1 — 4an_o for n > 2.
Define
flx) = Z anz"”.
n>0

Then we have

f(x)—ap— a1z = Z anx”

n>2
f(x) — 1 +da = da(f(x) — 1) — 42 f(z)
1—8z 4 3

fz) =

(1—22)2 1-2z (1-21)2

Theorem 2.4.2.

1 n+a—-1\ , ,
(1—7‘x)“_z< a—1 )rm.

n>0

Definition 2.4.3 (Segan 3.6). Let (a,),n > 0 be a sequence of complex num-
bers. We say that the sequence satisfies a homogenecous linear recursion of degree
d with constant coefficients if there is d € Z and constants ¢y, ..., cq € C with
cq # 0 such that

Qnid + C1apyd—1 + C2Gpig—2 + -+ + cqa, = 0.

Theorem 2.4.4. Given a sequence (a,) satisfied the definition above, and d €
Zy. Let q(x) = 14 c12 + cox® + - + cqz?. TFAE

1. The sequence is homogenous with linear recursion of degree d with constant
coefficients

2. The generating function f(x) =3_, 5, anz" has the form

and degree p(x) < d.

. k ..
3. We can write an, = Y ;_, pi(n)r where r; are distinct non zero complex

numbers satisfying
k

q(x) = H(l — )4,

i=1

And p;(n) is a polynomial with degree p;(n) < d; for all i.

11



2.5

Theorem 2.5.1 (the BEST theorem). If G is a digraph that satisfies indeg =
outdeg at every vertex, then the number of Eulerian cycles equals to the number

of intress rooted at v times [],, oy (outdeg(w) — 1)

Definition 2.5.2. A binary de bruign sequences of degree n is a sequence of 0’s
and 1’s of length 2™:
ajaz - agn.

Looking at circular windows of length n, we see all possible binary sequences of
length n.

Notice that BDBS are really Eulaerian cycles! Denote the corresponding graph
as D,,.

Claim: eigenvalues of L(D,,) are 0,2,2,2,...,2 for 2"~ — 1 times.

The number of binary de Bruijn sequences of degree n is

2’”{171 2271—1_1 _ 227171_".

Similarly, th number of k-ary dBS of degree n is

BT (= 1)

2.6 Chromatic polynomials

Let G be an undirected simple graphs (no multiple edges, no loops) Denote
G=(V,E).

Definition 2.6.1. A coloring of G is a map ¢ : V — S where S is the set of
colors. A coloring is proper if e(u) # c(v) when (u,v) € E.

Definition 2.6.2. The chromatic number of G, denoted by x(G), is the minimal
cardinality of S such that there’s a proper coloring.

An edgeless graph has x(G) = 1 and a bipartite graph has x(G) = 2.

3 Poset

3.1 lattice

Proposition 3.1.1. Let L be a finite lattice. The following two conditions are
equivalent.

1. L is graded, and the rank function p of L satisfies

p(s) + p(t) = p(s At) + p(s V1)
for all s,t € L.
2. If s and t both cover s At, then sVt covers both s and t.

12



A finite lattice satisfying either of the (equivalent) conditions of the previous
proposition is called a finite upper semimodular lattice, or a just a finite semi-
modular lattice.

A finite lattice L whose dual L* is semimodular is called lower semimodular.
A finite lattice that is both upper and lower semimodular is called a modular
lattice.

Proposition 3.1.2. A finite lattice L is modular if and only if it is graded, and
its rank function p satisfies

p(s)+p(t) =p(s ANt)+p(sVit) foralls,t € L

For any poset P, let J(P) be the set of order ideals of P.

Theorem 3.1.3 (Fundamental Theorem of Finite Distributive Lattices). For
any finite distributive lattice L, there is a unique poset P (up to isomorphism)
such that L = J(P).

Proposition 3.1.4 (Segan 5.3.5). We have J(P) is a distributive lattice.

For z € L — {0}, we say x is join-irreducible if whenever =y V z then y = x
or z =ux.

Proposition 3.1.5. In a finite lattice L,
1. x € L is join irreducible iff x covers exactly one element.

2. For any x € L, if
L ={r<pz|relr(l)},

then © = Vyer, 7.

3.2 Mobius

Definition 3.2.1. Let P be alocally finite poset with a unique minimal element
0. The Mobius function of P

1 =0
M=<" .
{_ Zy<z M(y), otherwise

In more generality, for any poset P, and any choice z, z such that z <p z,

r ==z

1
M(z,2)=<" )
(@2) {— > w<py<pz M(7,y), otherwise

13



