Def'n Let $S=$ set, a binary operation on S is a function $J=S \times S \rightarrow s$

$$
S \times S=\{(a, b) \mid a \in S, b \in S\}
$$

convention we will often write $f(a, b)$ as " $a \cdot b$ " or " $a b$ "
allows us to be less
Def'n A binary operation $f: s \times s \rightarrow s$ is associative careful when writing down if $\forall a, b, c \in S, \quad f(f(a, b), c)=f(a, f(b, c))$ long "products"
in new notation: $(a \cdot b) \cdot c=a \cdot c b \cdot c)$
exist $S=M_{n}(\mathbb{R})=n \times n$ matrices $w /$ real coefficients
$f(A, B)=A \cdot B \in$ matrix unltiplication, which is associative
key fact composition of functions transformations is associative
Det'n A binary operation is commutative
if $\forall a \cdot b \in S, \quad a \cdot b=b \cdot a$
ex's $1 \quad(\mathbb{R},+1$ - real number addition
Def'n Given S equipped $w /$ a binary operation, , we say
(S, \cdot) has an identity element
if $\exists e \in S$ sit. $\forall a \in S, a \cdot e=a=e \cdot a \quad$ doesn't change identity
Def'n An element a of (S, \cdot) is called invertible (w/e =identity) if $\exists b \in S$ att. $a b=e=b a$

Deft A group is a set $(G, \cdot) w /$ a binary operation s.t.
i) it's associative
ii) \exists an identity element $e \in G$
isis) every element in G is invertible
If . is commutative, G is called an abelian group
exist $\quad G=\left\{\begin{array}{l}\left.\left.\text { bijections } T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \text { so that } T \text { (standard unit square }=\delta_{1}\right)=\&_{1}\right\} \\ \text { binary operation: composition }\end{array}\right\}$
another name: D_{8}
Thu: D_{8} contains exactly 8 elements
claim If $\varphi \in G$, then φ can be expressed as a finite composition
then of can be expressed as a fini'e composition $\varphi_{1} \circ \rho_{2} \cdot \varphi_{3} \ldots$
where for each $i, \rho_{i}=\left\{\begin{array}{l}\text { notation by } 90^{\circ} \text { wounter-abockwise } \\ \text { reflection over a horizontal line of symmetry }\end{array}\right\}$ $r^{4}=h^{2} \quad$ rotation for 4 times $=$ reflection twice

Def'n A subgroup H of a group $(G$, ,) is a subset of G which is also a group with respect to .
claim Given a group $(G, \cdot) \quad\{H \subseteq G, H$ is a subgroup of G
\Leftrightarrow 1) $\forall h_{1}, h_{2} \in H, h_{1} \cdot h_{2} \in H$ closure
2) $\forall h \in H, \quad h^{-1} \in H \quad$ invertible

Def'n Given $\{1,2,3, \ldots, n\}$ for some $n \in N_{1}$
define $S_{n}=(\{$ bijection s $\tau:\{1,2,3, \ldots, n\} \rightarrow\{1, \ldots, n\}\}$, composition $)$
Fact S_{n} is a grape, called the "symmetric group on n elements.
Terminology elements of S_{n} are called permutations axis 1 say $n=5$, the $\tau: \begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 4 & \\ 5 & 4 & & 5\end{array}$

$$
\tau=\frac{(1534)}{1 \text { to } 5,5 \text { to } 3,3 \text { to } 4,4 \text { to l } 1 \text { and } 2 \text { to itself }}
$$

caution cycle notation is wot unique:
inverse $\underbrace{\left.\left.\frac{(1}{1} 534\right)(2)\right)}_{\tau} \underbrace{(1435)(2))}_{\tau^{-1}}=\frac{(1)(2)(3)(4)(5)}{1}$

Let $\tau \in S_{n}$. Define $M_{\tau}=u \times n$ matrix obtained from In after permuting rows of I_{n} via τ
ends $\tau \in S_{4}, \tau=\left(\begin{array}{lll}1 & 3 & 4\end{array}\right)$

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \Rightarrow\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

ex. if $\vec{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)$ compute $M_{\tau} \cdot \vec{x}=\left(\begin{array}{l}x_{4} \\ x_{2} \\ x_{1} \\ x_{3}\end{array}\right)$
observation
$M_{\tau} \cdot\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)=\left(\begin{array}{c}x_{\tau}^{-1}(1) \\ \vdots \\ x_{\tau^{-1}}(n)\end{array}\right)$
The
(i) $\quad \forall \tau \in S_{n} . \quad \operatorname{det}\left(M_{\tau}\right)= \pm 1$
(ii) Given $p, q \in S_{n}, M_{p q}=M_{p} . M_{q}$

Defin Given $\tau \in S_{n}$, the sigh of τ is the sigh of $\operatorname{det}\left(M_{\tau}\right)$
Def'n greatest common divider : $\operatorname{gcd}(a, b) \quad d=p-a+q \cdot b$
Euclidean algorithm: $\operatorname{ged}(314,136)$
Deft Given $a, b \in \mathbb{Z}, a, b \neq 0, a\{b$ are relatively prime if $\operatorname{gcd}(a, b)=1$
Fact $g a b(a, b)=$ product of prime powers comes + prime factorizations of $a \& b$ corollary: $\quad a \& b$ are relatively prime $\Leftrightarrow \operatorname{god}(a, b)=1 \Leftrightarrow a \mathbb{Z}+b \mathbb{E}=1$

$$
r a+s b=1
$$

Corollary: Suppose $p=$ prince $(i . e . ~ 2,3,5,7,11, \ldots)$ Thengiven $a, b \in \mathbb{E}$, if $a l a b$, then play or glib (or both)

Thy If $S \subseteq \mathbb{Z}$ is a subghap of $\left(\mathbb{Z}_{+}+\right)$ then either $S=$ trivial subgrap

$$
\text { or } \exists a \in \mathbb{Z}, \quad a \neq 0 \text { so that } S=a \mathbb{Z}=\{\text { multiples of } a\}
$$

pf Suppose S is a subgroup of $(\mathbb{Z},+)$
We know $0 \in S$
if no other elements are in S. $S=\{0\}$. So $S=$ trivial subgroup
Otherwise, $\exists n \in \mathbb{Z}, n \neq 0\{n \in S, n \in S \Rightarrow-n \in S$ sulghoap incholes inverse
Since one of $n \&-n$ has to be positive, assume $n>0$
Let $a=\min \{k \mid k>0, k \in S\}$
choose $K \in \mathbb{N}$, then $K \cdot a=a+a+\cdot+a$ for k times
$k \cdot a \in S$. Since $a \in S$ and S is closed under addition
$k \cdot a \in S \Rightarrow-k \cdot a \in S \quad S$ contains inverses
intri4on:
a is the smallest component

$$
\Rightarrow a \mathbb{Z} \leq S
$$

Now WTS $S \leq a \mathbb{Z}$ to prove $S=a \mathbb{Z}$
pick $n \in S$ s.t. $n=q a+r$, for some $q \in \mathbb{Z}, 0 \leq r<a$
$a \mathbb{Z} \leq S \Rightarrow q a \in S$. Also, $n \in S \Rightarrow n-g a \in S \Rightarrow r \in$
$\Rightarrow r=0$ because a is the minimum +

$$
\Rightarrow n=9 a
$$

$\Rightarrow S \subseteq a \mathbb{Z}$

The Let $G=\left((G, \cdot)\right.$ a group $\left\{\right.$ let $I=\operatorname{set}\left\{\right.$ let $\left\{H_{i}\right\}_{i \in I}$ be a family of subgroup's of G indexed by 1 . Than $\bigcap_{i \in 1} H_{i}$ is a subgrow
$\int_{h \in G \mid h \in H_{i} \quad \forall i} \quad \forall$
Pf wis:
i) $\bigcap_{i \in I} H_{i} \neq \phi: \quad e \in H_{i} \quad \forall i \Rightarrow e \in \bigcap_{i \in I} H_{i}$
ii) $\forall h_{1}, h_{2} \in \bigcap_{i \in I} H_{i} \Rightarrow h_{1} h_{2} \in \bigcap_{i \in 2} H_{i}: h_{1}$

Deft Given $a \mathbb{Z}\{b \mathbb{Z}$, consider $S=a \mathbb{Z} \cap b \mathbb{Z}$. S is a subgrp q it's a form of $m \mathbb{Z}$. for some $m: m \mathbb{Z}=a \mathbb{Z} \cap b \mathbb{Z}$. so $m \in a \mathbb{Z}$ i $m \in b \mathbb{Z}$ $\Rightarrow \mathrm{m}$ is a multiple of $a \geqslant b$. m is called least colon multiple

Def'n Let $(G, \cdot)=$ any grasp $\& x \in G$. Than the cyclic subgroup generated by X, denoted $\langle x\rangle$, is all powers of x :

$$
\left.\langle x\rangle=9 \ldots, x^{-2}, x^{-1}, e, x, x^{2}, x^{3} \ldots\right\}
$$

Thu In G, let $r(x)=\left\{\begin{array}{l}x, \\ H \leq G \mid\end{array} H=\right.$ subgrop, $\left.x \in H\right\}$. Than, $\bigcap_{H \in p(x)}^{\rightarrow \text { intersection }} H=\langle x\rangle$
Proof For any $H \in P(x), x \in H$ by dofn of $P(x)$
$x \in H \Rightarrow x^{2}, \cdots, x^{\cdots} \in H$ since H is a subgroup
$x \in H \Rightarrow x^{-1}, x^{-7}, x^{-3}=\cdots \in H$ since H has inheres etH as well

$$
\text { s }\left\{\ldots x^{2}, x^{-1}, e, x, \cdot x^{2} \ldots\right\}=\langle x\rangle \leqslant H
$$

so $\langle x\rangle \subseteq \bigcap_{H \in \pi(x)} r \mid$
WIS $\cap H \leq\langle x\rangle$
Let $g \in \bigcap_{H \in P(x)} H$ UTS $g \in\langle x\rangle$, ie. $g=x^{k}$ for some $k \in \mathbb{Z}$
Suppose $g \neq x^{k}$ for any $k \in \mathbb{Z}$
Bur $\langle x\rangle \in P(x) \& g \phi\langle x\rangle$
\Rightarrow contradiction! So, $g=x^{k}$ for some $k \in \mathbb{Z} \Rightarrow g_{6}\langle x\rangle$
Proposition Given $x \in G=$ group. lat $S_{x} \subset \mathbb{Z}$
Pf $\quad \begin{aligned} & S_{x}=q k \in \mathbb{Z} \mid x^{k}=e y \text { Then } \\ & S_{x} \neq \phi \text { since } 0 \in S_{x} \quad\left(x^{0}=e\right)\end{aligned}$
Suppose $k_{1}, k_{2} \in S_{x}$, i.e., $x^{k_{1}}=x^{k_{2}}=e \Rightarrow x^{k_{1}} x^{k 2}=e \Rightarrow k_{1}+k_{2} \in S_{x}$

$$
x^{k}=e \rightarrow x^{-k}=e^{-1}=e \Rightarrow-k \in S_{x}
$$

Sx a Subgp $\Rightarrow S_{x}=n \mathbb{R}$ for some n
Defin n is called the order of x in G. $x^{n}=e$ (since $n \in n Z=S_{x}$) Note: assume n is positive. if hot, replace it with $-n$ as long as $S_{x} \neq\{0\}$

In this case, n is the smallest positive $\# s_{0}+X^{\text {that number }}=e$
Note

$$
\begin{aligned}
x^{n+1} & =x \\
x^{n} x & =e x=x
\end{aligned}
$$

is when $\operatorname{order}(x)=n$

$$
\langle x\rangle=\left\{\ldots, x^{-2}, x^{-1}, \ldots x^{2}, \ldots\right\}=\left\{e, x, x^{2}, \ldots, x^{n-1}\right\}
$$

Pefn A homomorphism is a function $\varphi:\left(G,{ }^{\circ}\right) \rightarrow\left(G^{\prime}, \cdot\right)$

$$
\begin{aligned}
& \forall g_{1} \cdot g_{2} \in G, \\
& \quad \varphi\left(g_{1} \cdot g_{2}\right)=\varphi\left(g_{1}\right) \cdot \varphi\left(g_{2}\right)
\end{aligned}
$$

general et's
i) If G, G^{\prime} are any ghoups, let e^{\prime} denste identity elecount of $G i$, Then $\varphi: G \rightarrow G$ ' is a homonorphism, the "trivial nomomaphism:"

$$
\varphi\left(g_{1} g_{2}\right)=e^{\prime}=e^{\prime} e^{\prime}=\varphi\left(g_{1}\right) \varphi\left(g_{2}\right)
$$

ii) If $H=$ subgo of G, than $i: H \rightarrow G$ a homonorplism, called "mndusion.

Lennma
i) Given $a_{1}, \ldots, a_{n} \in G, \quad \varphi\left(a_{1} \ldots a_{n}\right)=\varphi\left(a_{1}\right) \cdots \varphi\left(a_{n}\right)$
ii) If e (resp, e^{\prime} ' denotes idurity in $G\left(\operatorname{rospin} G^{\prime}\right)$. $\varphi(e)=e^{\prime}$
i+i) \quad) $a \in G, \quad \varphi\left(a^{-1}\right)=\varphi(a)^{-1}$ (innerse map to inverses)
Def'n Given $\varphi: G \rightarrow G^{\prime}$ a homonorphism.
image of $\varphi \operatorname{Im} \varphi=\left\{g^{\prime} \in G^{\prime} \mid \exists g \in G\right.$ s.t. $\left.G(g)=g^{\prime}\right\}$
kewnel of φ is $\operatorname{Ker} \varphi=\left\{g \in G \mid \varphi(g)=e^{\prime}\right\}$
Leuna Imp, is a subgp of $G^{\prime} \quad \phi \operatorname{ker} \varphi$ is an subgp of G
PJ For Imp
(1) $\quad \operatorname{im} \varphi \neq \phi$ cuz $e^{\prime} \in \operatorname{im} \varphi$ since $\varphi(e)=e^{\prime}$
(2) Suppose $a_{1}^{\prime}, a_{2}^{\prime} \in G^{\prime}$ in imp $\Rightarrow \exists a_{1}, a_{2} \in G$ s.t. $\varphi\left(a_{1}\right)=a_{1}^{\prime}, \varphi\left(a_{2}\right)=a_{2}^{\prime}$

$$
a_{1} a_{2} \in G\left\{\varphi\left(a_{1} a_{2}\right)=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right)=a_{1}^{\prime} a_{2}^{\prime} \in \operatorname{inn} \varphi\right.
$$

(3) $a^{\prime} \in \operatorname{im} \varphi \Rightarrow \exists a \in G$ s.t. $\varphi(a)=a^{\prime}$

$$
\varphi\left(a^{-1}\right)=(\varphi(a))^{-1}=\left(a^{\prime}\right)^{-1}=a^{1-1} \in \operatorname{im} \varphi
$$

Deft A homonoiphism : $G \rightarrow G$ ' is called an isomaphism if it's a bijection
i.e. Imp $=G^{\prime}$.
φ is one to one $\Leftrightarrow \operatorname{ker} \varphi=\{e\}$
cana $(\varphi$ is one to one $\Leftrightarrow \operatorname{ker} \varphi=\{e\}$
an isomorphism $\varphi: G \rightarrow G^{\prime}$ is a ham st. $\operatorname{ker} \varphi=\{e\}\{\operatorname{im} \varphi=G 1$
ext 1 conjugation:
Let $G=$ group. $g \in G, \quad \varphi_{g}: G \rightarrow G$
define $\varphi_{g}(a)=g a g^{-1}=1$ the conjugate of a by $g^{\prime \prime}$
claim. $\quad 4 g$ is an isomorphism!

1) φ_{g} is a how: Given $a, b \in G, \varphi g(a b)=g a b g^{-1}=g a\left(g^{-1} g\right) b g^{-1}$

$$
=\left(g a g^{-1}\right)\left(g b g^{-1}\right)=\varphi g(a) \varphi g(b)
$$

2) $\operatorname{ker} \varphi=\{e\}$: Suppose $\varphi_{g}(a)=e \Rightarrow g^{a} g^{-1}=e$

$$
\rightarrow a=g^{-1} e g=g^{-1} g=e \Rightarrow \operatorname{ker} \varphi=\{e y
$$

3) $\operatorname{im} \varphi=G$
given $a \in G \quad g^{-1} a g \in G \quad \varphi g\left(g^{-1} a g\right)=g g^{-1} a g g^{-1}=a$

Def'n A subgp H of a gray G is called normal if $\forall g \in G, \varphi_{g}(H)=H$
Deft Given a set S, an equivalence rein is a subset, E, of $S \times S$, satisfying:
i) $\forall x \in S,(x, x) \in H$
ii) $\forall x, y \in S$, if $(x, y) \in E$, then $(y, x) \in E$
inti $\forall x, y, z \in S$, if $(x, y) \in E\{(y, z) \in E$, +hat $x, z) \in \mathcal{E}$
Wheneor $(x, y) \in E$, we' a of the write $x \sim y$
and well say x is equicoleat to y
Def'n Given a set $S\{x \in S,\{$ an equivalence rodin \sim, the equivalence class of X, denoted $[x]$, is $[x]=\{y \in S \mid x \sim y\}$

Thy If $S=$ set, $\sim=$ equivalence rel' n, then the equiv classes of \sim disointly partition S, i.e every element- of S is contained is EXACTL one equivalence class.

Given $S, \sim=$ equiv rodin on $S, \bar{S}=\{[x] \mid x \in S\}=$ set of equiv classos: In this situation, \exists a map $\pi: S \rightarrow \xi$

$$
x \mapsto[x]
$$

Def'n $\quad G=$ group, $\quad H_{2}$ subgroup of $G, a \in G$
The right coset of H with respect to a is

$$
H_{a}=\{g \in G(\exists h \in H \text { ant. ha }=g\}
$$

Lemma $\quad H_{a}=H b \Leftrightarrow a b^{-1} \in H$

Lemma Given G.H G subgp. the rel'n defined by $a \sim b \Leftrightarrow a b^{-1} \in H$ is an equiv rein. The equi class of the equiral rel'n are the right coset e of H.
3) The equivalence class of \sim are the right cosets of H 1.e. given $g \in G \quad[g]=\{a \in G \mid g \sim a\}=H g$
4) Since equiv classes always dispointly partition a set, every element of G is contained in exactity one coset.

Lemma If $|G|<\infty, H=$ surge, every inght coset of H has the same of elemouts! i.e. given $a, b \in G$, size $(H a)=s i x(H b)$
Pf $\quad \forall a \in G$, size $\left(\mathrm{Ha}_{a}\right)=1 \mathrm{HI}$ since H is itself a night coset
Note $\quad \varphi: H \rightarrow H a \quad$ is a bijection
$h \mapsto h a$
onto: $\forall g \in H a, \exists h \in H$ st. $g=h a$, so
one to one: $\varphi\left(h_{1}\right)=\varphi\left(h_{2}\right)$

$$
h_{1} a=h_{2} a \quad \Rightarrow h_{1}=h_{2}
$$

sets can be put in bijection θ they hone tho same size
lagrange If θ is a finite group. It a subgp of G.
Theorem
Pr
then $|H|||G|$
The right cosets of H shave no elements in common \{ They over all of G
AND. $\left|\mathrm{Hal}_{\mathrm{a}}=|H|\right.$ by the last lemma.
so $|G|=(\#$ of right cosets of H) $\cdot(|H|)$
notation $\tau G: H]$
"index of H in G "
corollary If $a \in G$, then $\operatorname{order}(a) \mid L G l$
Recall given $g \in G$, the conjugation isomorphism for g is $\varphi g: G \rightarrow G$

$$
a \mapsto \operatorname{gag}^{-1}
$$

A subgroup H in G is called normal if

$$
\forall g \in G, \quad \varphi g(H) C H \quad H \triangleleft G
$$

Preposition: If $\varphi: G>G$ a nom, then $\operatorname{ker} \varphi \boxtimes G$
Pf WTS: Given $a \in \operatorname{ker} \varphi \& g \in G, \widehat{\varphi g(a)} \underset{\in}{\in} \operatorname{ker} \varphi$

$$
\varphi\left(g a g^{-1}\right)=\varphi(g) \varphi(a) \varphi\left(g^{-1}\right)=\varphi(g) e^{1} \varphi\left(g^{-1}\right)=\varphi(g) \varphi(g)^{-1}=e^{\prime} \in \operatorname{ker} \varphi
$$

Thm (The tollowing are equiva(ant)
i) $H \rightharpoonup G$
ti) $\forall g \in G, g H g^{-1}=\left\{a \in G \mid \exists n \in H\right.$ s.t. $a=g h g^{-1} y=H$
iti) $\quad \forall g \in G, g H=H g$
iv) Every left coset of H is a right coset of H.
i.e. given $a H, \exists b \in G$, a.t. $a H=H b$

Pf:
(i) $-($ (i)
$\varphi_{g}(H) C H$ is trivial

$$
\begin{aligned}
H \subset \varphi g(H) \Rightarrow \varphi g^{-1}(H) \subset H\left\{\varphi g^{-1}(H)\right. & =g^{-1} H g \text { so } g^{-1} H g c H \\
\forall h \in H, \exists h^{\prime} \in H \text { s.A. } g^{-1} h g=h^{\prime} & \Rightarrow h=g h^{\prime} h^{-1} \\
& \Rightarrow H \subset g H^{-1}
\end{aligned}
$$

Recall Remember the rank-nullity tho from linear algebra:
$V, W=$ finite $d i m$ vector spaces, $T: V \rightarrow W$ linear

$$
\operatorname{din}(V)=\operatorname{dim}(\operatorname{ker} T)+\operatorname{dim}(\operatorname{Range}(T))
$$

Goal: Do shh similar for groups! i.e.

linear	group
$v, w=$ vector spaces	$G, G^{\prime}=$ greps
$T: v \rightarrow \omega$ linear	$\varphi: G \rightarrow G^{\prime}$ a homomorphism
$\operatorname{kercT})$	$\operatorname{ker}(\varphi)$ ie. normal Subgp

intuition:

Thu A sarge H of G is normal
(e) \exists ar group $G^{\prime} \xi$ a $\operatorname{hom} \varphi: G \rightarrow G^{\prime}$ sit. $H=\operatorname{ker}(\varphi)$

Let's find G^{\prime} SHA. \exists an onto ham $\varphi: G \rightarrow G$ ' with kerf $=H$
Let G / H " $G \bmod H$ " $=\{$ right coset of H in G)
Fact $¥$ a binary operation on G / H twining it into a group ξ this will be our G
$\{\exists \varphi G \rightarrow G / H[g \mapsto H g)] \Rightarrow$ we defined φ as this considering its domain
20. $\operatorname{ker}(\varphi)=\{g \in G \mid \varphi(g)=H\}$ \& co-domain

$$
\begin{aligned}
& \quad \text { no } \operatorname{ker}(\varphi)=\{g \in G \mid H g=H 3 \\
& H_{a}=H b \Leftrightarrow a b^{-1} \in H \\
& \text { no } H g=H \Leftrightarrow g \in H \\
& \triangleq \operatorname{ber}(\varphi)=H
\end{aligned}
$$

Given $H_{a}, 4_{b}$ in G/H define an operation

$$
H_{a} \cdot H_{b}={ }^{\prime} H_{a} H_{b} "=\left\{g \in G \mid \nexists h_{1} h_{2} \in H \text { st. } g=h_{1} a h_{2} b\right\}
$$

Actually, we shoved that HaH $\mathrm{H}_{b}=\mathrm{HH} \mathrm{lab}_{\mathrm{c}}$ (TFAE)
HHab C Hab since H is closed
if $g \in H a b \Rightarrow g=h \cdot e \cdot a \cdot b \Rightarrow g \in H H_{a} b$

$$
\Rightarrow H_{a b}=H_{a b}
$$

To summarize: $s=$ subspace of $\sqrt{1}$
Given $S \subseteq V, T \exists$ a decomposition of V into
parallel copies of $S \xi$ a V.S. W a linear map,
$T: V \rightarrow W$ so that T collapses the to points and $\operatorname{ker}(T)=S$.
Our goal in the group theory setting:
Given $H \Delta G(H$ is normal in $G), \exists$ a decomposition of G into right cosets of H in $G\left\{\exists\right.$ a group G^{\prime} ! a homomorphism $\varphi: G \rightarrow G^{\prime}$ so that φ collapses the of H to a point $; \operatorname{ker}(\varphi)=H$.
V is an abelian group D any subgp is normal!
Lemma Given $H \triangleleft G$, if $H_{a}=H_{a}{ }^{\prime} \quad\left\{H b=H b^{\prime}\right.$ then $H a b=H_{a}{ }^{\prime} b$ WIS: $a b\left(a^{\prime} b^{\prime}\right)^{-1} \in H$ we want the costs themselves matter instead of what prochues them?
no tars we hae that θ^{\prime} has a binary oping.

$$
\begin{aligned}
\varphi: G & \rightarrow G^{\prime} \\
a & \mapsto H a
\end{aligned}
$$

$$
g \mapsto H g
$$

(the stat above)

Given $a, b \in G, \varphi(a b)=H_{a b} \stackrel{I}{=} H_{a} H_{b}=\varphi(a) \varphi(b)$ $\Rightarrow \varphi$ "has the how prosperity". (he doit know G^{\prime} is a
Note: φ is onto! Given $H_{g} \in G / H, \varphi(g)=H g$ yet)

$$
\begin{aligned}
& \text { pf: WTS } a b\left(a^{\circ} b\right)^{-1} \in H \\
& \underbrace{a b\left(b^{\prime}\right)^{-1}\left(a^{\prime}\right)^{-1}}_{a h\left(a^{\prime}\right)^{-1} .} \cdot \quad H b=H b^{\prime} \Rightarrow b\left(b^{\prime}\right)^{-1}=h \in H . \quad . \\
& a h\left(a^{\prime}\right)^{-1} . \quad a h \in a H \underset{\substack{\uparrow \\
H \bullet G}}{=} H a \\
& \Rightarrow \exists h^{\prime} \in H \text { set. } a h=h^{\prime} a \text {. } \\
& \Rightarrow a h\left(a^{\prime}\right)^{-1}=h^{\prime}\left(a\left(a^{\prime}\right)^{-1} \quad H a=H a^{\prime} \Rightarrow a\left(a^{\prime}\right)^{-1} .\right.
\end{aligned}
$$

$$
\begin{aligned}
& H a=H a^{\prime}
\end{aligned}
$$

Lemma If G is gray，$Y=$ set with binary operation $\{\varphi: G \rightarrow Y$ sit．φ has the nom property（ Y is not a group） $\{$ suppose φ is auto．Then Y is a group．$\{Y$ is a hoo
Pf Associativity：Given $a, b, c \in Y, \varphi$ onto $\Rightarrow \exists a^{\prime}, b^{\prime}, c^{\prime} \in G$ sit．$\varphi\left(a^{\prime}\right)=a$ ．

$$
\begin{array}{ll}
\varphi\left(b^{\prime}\right)=b, \quad \varphi\left(c^{\prime}\right)=c & \text { 早 is hon } \\
\text { ho, }(a b) c=\left(\varphi\left(a^{\prime}\right) \varphi\left(b^{\prime}\right)\right) \varphi\left(c^{\prime}\right)=\varphi\left(\left(a^{\prime} b^{\prime}\right)\right) \varphi\left(c^{\prime}\right)=\varphi\left(\left(a^{\prime} b^{\prime}\right) c^{\prime}\right) \\
G \text { is } 9 p \\
=\varphi\left(a^{\prime}\left(b^{\prime} c^{\prime}\right)\right)=\varphi\left(a^{\prime}\right)\left(\varphi\left(b^{\prime}\right) \varphi\left(c^{\prime}\right)\right)=\varphi\left(a^{\prime}\right)(b c)=a(b c)
\end{array}
$$

Given a normal subgp $H \nabla G$. to construct a onto han $\varphi: G \rightarrow G^{\prime}$ for some other gp G^{\prime} sol.
i) $G^{\prime}=G / H$ (only a group H is normal)
it) $\varphi: G>G / H$ is the "natural" map, i.e. $\varphi(g)=H g$
iii) identity elewnet of G / H is $H \quad(H g \cdot H=H H g=H(H)$
iv) $\varphi^{-1}(H)=\operatorname{ker} \varphi=H_{\pi}$
ar element $G / H \quad X_{\text {subset in }} G$
$v)$ The cosets of H in G are in general, the phe-inage sets of φ.
"fibers" = set of elemarts in θ
all mapping to same place
brief we described a moraine which, when we inputeod a norma aubgp $H \nabla G$, entputted an onto nom $\varphi: G \rightarrow G / H$

1 st $_{\text {st }}$ Given $\varphi: G \rightarrow G^{\prime}$ an onto hon, lat $\operatorname{ker} \varphi=N$. Then $G / \lambda /$ theorem is isomophic to G^{\prime}.

Also, \exists an only isomo $\bar{\varphi}: G / N \rightarrow G^{\prime}$ that "somites with" the natural map $\pi: G \rightarrow G / N, \pi(g)=N g$

If Start with $p: G \rightarrow G^{\prime}$ an onto how. Define $\bar{\rho}: G \mathbb{N} \rightarrow G^{\prime}$ "her by $\phi(N g)=\varphi(g)$
For this idea to actually maine sense, he have to show that if $N_{g_{1}}=N_{g_{2}}$, then $\varphi\left(g_{1}\right)=\varphi\left(g_{2}\right)$ names don't matter $\times 2$

$$
N g_{1}=N g_{2} \Leftrightarrow g_{1} g_{2}^{-1} \in N=\operatorname{ker} \varphi
$$

$\Rightarrow \varphi\left(g_{1} g_{2}^{-1}\right)=e^{1}$ (identity in $\left.G^{\prime}\right) \Rightarrow \varphi$ is nom

$$
\Rightarrow \varphi\left(g_{1}\right) \varphi\left(g_{2}\right)^{-1}=e^{\prime} \Rightarrow \varphi\left(g_{1}\right)=\varphi\left(g_{2}\right)
$$

i) $\bar{\varphi}$ is a hon: $\bar{\varphi}\left(N_{g_{1}}, N_{g_{2}}\right) N$ is normal \rightarrow herne of any

$$
=\varphi\left(g_{1} g_{2}\right)=\varphi\left(g_{1}\right) \varphi\left(g_{2}\right)=\bar{\varphi}\left(\lg _{1}\right) \bar{\varphi}\left(N g_{2}\right)
$$

(t) $\bar{\varphi}$ is onto: Given $g^{\prime} \in G^{\prime}$

Given $g^{\prime} \in G^{\prime}$, want to find same $x \in G / N$ sit. $\bar{\varphi}(x)=g^{\prime}$ φ onto $\Rightarrow \exists y \in G$ hit. $\varphi(y)=g^{\prime}$. Then $\pi(y)=N_{y}$

$$
\left\{\bar{\varphi}\left(N_{y}\right)=\varphi(y)=g^{\prime}\right.
$$

iii) $\bar{\varphi}$ is one to one: if $\bar{\varphi}\left(N g_{1}\right)=\bar{\varphi}\left(N g_{2}\right)$

$$
\begin{aligned}
& \Rightarrow \varphi\left(g_{1}\right)=\varphi\left(g_{2}\right) \Rightarrow \varphi\left(g_{1}\right) \varphi\left(g_{2}\right)^{-1}=e^{1} \Rightarrow \varphi\left(g_{1} g_{2}-1\right)=e^{1} \\
& \Rightarrow g_{1} g_{2}-1 \in \operatorname{ker} \varphi=N \Rightarrow N g_{1}=N g_{2}
\end{aligned}
$$

iv) commuting: Given $g \in G$, WTS that $\varphi(g)=\bar{\varphi}(\pi(g)$.

$$
\pi(g)=\mathrm{Ng} \quad \phi
$$

For uniquesness, ψ satisfies, $\psi: \operatorname{GiN}_{\boldsymbol{M}} \rightarrow \mathcal{G}^{\prime}$, an Iso,

$$
\varphi=\psi \circ \pi \cdot g \in G \underset{N(N)}{ } \underbrace{\prime} G^{\prime}
$$

for this to work ψ has to send the coset
$N g$ to $\varphi(g)$. Because if not, $\varphi(g) \neq \psi(\pi(g))$.
But, this is exactly how we defined $\bar{\varphi}$, so $\bar{\varphi}=\psi$.
kery is called the "commutator Subgp"

Oct 12
Def'n A subbing of \mathbb{C} is a subset $R \subset C$, closed under addition, subtraction, multiplication \& containing 1
ex 1 "Gaussian integers", $\mathbb{Z}[i]=\left\{a+b_{i} \mid a, b \in \mathbb{Z}\right\}$
Given $\alpha \in \mathbb{Z}$, consider $\mathbb{Z}[\alpha]=$ subring generated by α
$=$ smallest subbing of $\mathbb{2}$ containing α
Note.. any subring of \mathbb{C} contains \mathbb{Z} as a subset
(it contains 1 \& 1 it's closed under addition $\&$ subtraction)
$\mathbb{Z}[\alpha]=$ smallest subring of \mathbb{C} containing α
\mathbb{Z} adjoin α ($\{$ so it ale contains \mathbb{Z})

If $a_{0}, a_{1}, \cdots, a_{n} \in \mathbb{Z}$, then $\left.a_{n} \alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha+a_{0} \in \mathbb{Z} t \alpha\right]$
polynomial $p(x)^{"}$
bo, $\mathbb{Z}[\alpha]$ contains $p(\alpha)$, where p is any polynomalal with integer weflicient.
claim: the polynomials are all of $\mathbb{Z} セ \alpha I$
proof:
Let $S=\left\{a_{n} \alpha^{n}+\cdots+a_{1} \alpha+a_{0} \mid n \in \mathbb{N}\left\{a_{0}, \ldots, a_{n} \in \mathbb{Z}\right\}\right.$
Then S is closed under addition
unltiptication $\&$ subtraction
Also,,$\in S \Rightarrow S$ is a subbing of \mathbb{C}
$\Rightarrow S \subset \mathbb{Z}[\alpha] \Rightarrow S=\mathbb{Z}[\alpha]$ the smallest
Def n $\alpha \in \mathbb{C}$ is called algebraic if $\exists a a^{2}$ polynorowad l integer wefficient p hit. $p(\alpha)=0$
Otherwise. α is called transcendental.

If α is transcendental, $\mathbb{E} \tau \mathcal{I}$ is in $\mid-1$ correspadence $w /$ an polynomials $w /$ integer aoeff's
ie. if $a_{m} \alpha^{m}+\ldots+a_{1} \alpha+a_{0}=b_{n} \alpha^{n}+\ldots+b_{1} \alpha+b_{0}$
then $m=n, a_{m}=b m \ldots a_{0}=b$,
\& $\Rightarrow m>n$

$$
a_{m} \alpha^{m}+\cdots+\left(a_{n}-b_{n}\right) \alpha^{n}+\ldots+\left(a_{0}-b_{0}\right)=0
$$

so $p(x)=a_{n} x^{n}+\cdots+\left(a_{n}-b_{n}\right) x^{n}+\cdots+a_{0}-b_{0}$ is a poly's with \mathbb{Z} coed's s.t. $p(\alpha)=0$ But α is transcendental $\Rightarrow p(x)=0$

Defin A ring is a set R, together with 2 binary operation, called "addition" \{ "multiplication"
sentisfying: (i) $\underbrace{C R,+1}_{R^{+}}$is an abelian group (identity $=" 0 ")$
(ii) multiplication is
associative
\& \exists an identity element called "," (iii) $\forall a, b, c \in R, \quad(a+b) c=a c+b c$

A subring of R is a subset $S \subset R$,
closed under addition, subtraction, multiplication $\{$ containg 1 .

Oct 14
Def'n If $r \in R^{\text {, ring }}\{\exists s \in R$ sit. $r=1$. risc called a una in R
Defin If F is a ring where every nou-zero elemat is a until, then P is called a fields.

Lemma If R is a ring which $1=0$, then $R=\{0\}$
Pf let $a \in R$,
$a+1=a$ by defin of multi
But $1=0$ o $a \cdot 0=a$

$$
\begin{aligned}
& =a \cdot(0+0)=a \cdot 0+a \cdot 0 \\
& =a \cdot 0=a
\end{aligned}
$$

If R is any ring, ne can form a new ring called $R_{2 x 3}=$ \{poty's w/ weft's in RI

Def'n A ring homomorphism $\varphi: R \rightarrow R^{\prime}$ is a map
sit $\quad \forall a, b \in R, \varphi(a+b)=\varphi(a)+\varphi(b) j$

$$
\begin{aligned}
& \varphi(a b)=\varphi(a) \cdot \varphi(b) \\
& \varphi(1)=l^{\prime} R^{\prime}
\end{aligned}
$$

generalized evaluation
Substitution Let $\varphi: R \rightarrow R^{\prime}$ be a ring nom
Principle
let REnI be the ring of poly's w/ weft's in R.
Then given your far $a \in R^{\prime}$
Z! ring how $\Phi: R[x] \rightarrow R^{\prime}$ st. $\left.\Phi_{a}\right|_{R}=\varphi$
i) Φ (constant poly $=r=r$ ing element $)=\varphi(r)$
it) $\Phi(x)=a$

Oat is
Intuition Every ring hon is the restriction of a unique* generalized evaluation the only unique one once you choose $a \in R^{\prime}$
Pf Given $y: R \rightarrow R^{\prime}\left\{a \in R^{\prime}\right.$, define $\Phi_{a}: R[x] \rightarrow R^{\prime}$ by

$$
\Phi_{a}\left(a_{n} x^{n}+\ldots+a_{1} x+a_{0}\right)=\varphi\left(a_{n}\right) a^{n}+\ldots+\varphi\left(a_{1}\right) a+\varphi\left(a_{0}\right)
$$

(1) Φ_{a} is a ring how

Check that \mathbb{Q}_{a} is a ring nom:
UTS $\mathbb{I}_{a}(p(x) q(x))=\mathbb{I}_{a}(p(x)) \mathbb{I}_{a}(q(x))$

$$
\begin{aligned}
& \overline{\mathbb{I}}_{a}(p(x)+q(x))=\mathbb{\mathbb { X }}_{a}(p(x))+\mathbb{I}_{a}(q(x)) \text { \& } \\
& \Phi_{a}\left(1_{R}\right)=1_{R^{\prime}} \leftarrow \begin{array}{c}
\text { Works because } \\
\varphi \text { is a ring hos. } \Phi_{a}(1)=\varphi(1)=1
\end{array} \text { since } \\
& \varphi \text { is a ring nom. ALSo, if } r \in R \text {, } \\
& \text { III }(r)=\varphi(r) \text { by the formula, ! this verifies (i). } \\
& \left.\begin{array}{rl}
\text { If } p(x) & =a_{n} x^{n}+\ldots+a_{0} \\
q(x) & =b_{m} x^{m}+\ldots+b_{0}
\end{array} \text { then } \mathbb{X}_{a}(p+q)=\begin{array}{c}
?^{n+m} \\
\mathbb{I}_{a}\left(a_{n} x^{n}+\ldots+\left(a_{n}+b_{n}\right) x^{m}+\ldots\right) \\
+\left(a_{0}+b_{0}\right)
\end{array}\right) \\
& \begin{aligned}
& =\varphi\left(a_{n}\right) a^{n}+\ldots+\varphi\left(a_{m}+b_{m}\right) a^{m}+\ldots+\varphi\left(a_{1}+b_{1}\right) a+\varphi\left(a_{0}+b_{0}\right) \\
& =\varphi\left(a_{n}\right) a^{n}+\cdots+\left(\varphi\left(a_{m}\right)+\varphi\left(m_{n}\right)\right) a^{m}+\ldots+\left(\varphi\left(a_{1}\right)+\varphi\left(a_{n}\right)\right) a+\varphi\left(a_{0}\right)+\varphi\left(a_{0}\right)
\end{aligned}
\end{aligned}
$$

Let $f(x)=\sum_{i=1}^{n} a_{i} x^{i}, g(x)=\sum_{a}^{\frac{\pi}{a}}(r)=\varphi(r)$ by the torinila, : this verinisu.
III $(f g) \stackrel{\downarrow \downarrow}{=}$ 位 $a_{i} x^{i}, g(x)=\sum_{j=1}^{m} b_{j} x^{j}$. Then
by def'?

$$
\stackrel{\sum_{i=1}}{\varphi} \sum_{j=1}^{m} \varphi\left(a_{i} b_{j}\right) a^{i+j}=\sum_{i=1}^{n} \sum_{j=1}^{m} \varphi\left(a_{i}\right) \varphi\left(b_{j}\right) a^{i+j}=\Phi_{a}(f) \Phi_{2}(g)
$$

(2) unique ness

Uniqueness: Suppose $\omega: R[x] \rightarrow R^{\prime}$ some ring him sit.

$$
\begin{array}{ll}
& \text { Uniqueness: } \\
\omega(r)=\varphi(r) \quad \forall r \in R \quad \omega(x)=a \text {, since } w \text { is a ring ham }
\end{array}
$$

Then $\omega\left(a_{n} x^{n}+\ldots+a_{1} x+a_{0}\right)=\omega \omega\left(a_{n}\right) \omega\left(x^{n}\right)+\ldots+\omega\left(a_{1}\right) \omega(x)+\omega\left(p_{0}\right)$

$$
\begin{gathered}
=\varphi\left(a_{n}\right) a^{n}+\cdots+\varphi\left(a_{1}\right) a+\varphi\left(a_{0}\right) \\
=\overline{\mathbb{E}}_{a}\left(a_{n} x^{n}+\cdots+a_{1} x+a_{0}\right) .
\end{gathered}
$$

Thy If $R=r i n g$, then $(R \tau x \beth) \tau y \perp \approx R[x, y]$
 So., R is a subbing of $\left(R \subset x_{2}\right) \subset y \geq$
Consider the map $\quad \varphi: R \rightarrow(R \tau x]) \tau y \geq \quad$ (inclusion)
Sub principle: \exists ! ring low $\Phi: R[x, y \geq \rightarrow(R \tau x I)$ ry $]$
clair: I is a bijection
$R[x]$ is a subring of $R[x, y]$.
\exists inchsion: $R \tau_{x I} \ni R \tau_{x}, y_{2}$
so by sub principle.

$$
T:(R \tau x \beth) \tau y \geq \rightarrow R \tau x_{1} y \beth
$$

Oct 19
Defin An ideal of a ring R is a nou-empty set $I \leq R$ sit.
t) 1 is closed under t
ii) Given $r \in R\{s \in I, r s \in I$

Leanna Given $f: R \rightarrow R^{\prime}$ a ring home.
then $\operatorname{ker} y$ is an ideal R
$"\left\{r \in R \mid \varphi(r)=O_{R^{\prime}}\right\}$
Pf. Note $\varphi\left(O_{R}\right)=O_{R^{\prime}} \Rightarrow \operatorname{ker} \varphi \neq \phi$
对 $a, b \in \operatorname{ker} \varphi$

$$
\text { If } \begin{aligned}
& \varphi(a+b)=\varphi(a)+\varphi(b)=O_{R^{\prime}} \Rightarrow a+b \in \operatorname{ker} \varphi \quad O_{R} \cdot a=O R \\
& r \in R(s \in \operatorname{ker} \varphi \\
& \varphi(s r)=\varphi(s) \varphi(r)=O_{k^{\prime}} \cdot \varphi(r)=O_{R^{\prime}} \Rightarrow r s \in \operatorname{ker} \varphi
\end{aligned}
$$

Lemma I is an ideal $\Leftrightarrow I \neq \varnothing$
$\left\{\right.$ any linear conn $r_{1} s_{1}+\cdots+r_{R} S_{k}$ of $S_{i \in I}\{B \in R$ is in I
ext Given $a \in R$, its "multiples" form an ideal

$$
\{r a \mid r \in R\}
$$

\# "principal ideal" generated by a, denoted as (a).
An ideal is proper if $I \neq\left\{0_{R}\right\}$, if $I \neq R$
Caution: proper ideals are NOT subrings!!
if $I_{R} \in I$, then $I=R$
Prop. Every ideal in $\begin{gathered}F_{i x 1} \uparrow \text { fid } \\ \text { is principal }\end{gathered}$
A ring in when every ideal is principal is called a "principal ital domain" CPID,
ie. if $F=$ field, then CLxI is a PID
Poly's A poly $a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ is manic $y a_{n}=1$
poly division If $R=$ ring, $f \in R[\not x]\{f$ is manic. $g \in R[t]$, then $\exists!$ poly's $q(x) q r(x) \in R$ ex s.t.

$$
g(x): f(x) g(x)+r(x),\{\operatorname{deg}(r)<\operatorname{deg}(f)
$$

Pf Fix $I=$ ideal in $F_{2 \times 1}$, WIS $I=(f(x))$ for some $f \in I$, If $I=\{0\}, I$ is principal, choose $f=0$ so assume $I \neq 0 \Rightarrow$ nonzero poly's in I choose $f \in I$ st. deg(f) is minimal among all possible porgy's in I

Suppose $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$
$F=$ field $\Rightarrow \exists$ a unlti inverse of a_{n}. Multiply f by a_{n}^{-1} cue are still in 2) ne get $\tilde{f}(x)=x^{n}+a_{n}-1 a_{n}^{-1} x^{n-1}+\cdots+a_{1} a_{n}^{-1} x$ $+a_{0} a_{n}{ }^{-1}$
$\operatorname{deg}(\tilde{f})=\operatorname{deg}(f)$, so it's minimal degree AND manic
claim: $1=(\tilde{f})$

$$
(\tilde{f}) \subset 1, \quad w T s \quad I C(\tilde{f})
$$

choose $g(x) \in 1$. polynomid division

$$
g=\tilde{f} q+r \Rightarrow g-\tilde{f} g \in I \Rightarrow r \in I
$$

切 contradicts unless $r(x)=0$

$$
\Rightarrow g=q \tilde{f} \Rightarrow 1 \subset(\tilde{f})
$$

Very If R is any ring, $\exists!$ ring ham $\varphi: \mathbb{Z} \rightarrow R$.
$U t / 3$ given by $\varphi(n)=l_{R}+l_{R}+\cdots+l_{R},\{\varphi(-n)=-\varphi(n)$

The characteristic of R is the non-negatice number n generating the kernel of $\varphi: \mathbb{Z} \rightarrow R$
i.e. Smallest fl of tines you have to add k to itself in R, to get O_{R}.
$R / I=\{I+a \mid a \in R\}$ has a grape stunctue since $I_{\text {is nomad }}$
Does it have a ring structure. 2?

Oot 21
Thm \exists : nay of tarning R / I into a ring
S.t. natural map $\pi: R \rightarrow \frac{R}{I}$ is a ring hom $w /$ ker $=I$

$$
r>I+r
$$

$\{$ cosets $I+r \mid r \in R\}$
$1+a, 1+b \in R / I$

$$
(I+a) \cdot(I+b):=I+a b
$$

WTS $I+a^{\prime}=I+a q^{\prime} I+b^{\prime}=I+b$, then $I+a b=I+a^{\prime} b^{\prime}$ $a^{\prime} \in I+a^{\prime}+$ hus $a \in I+a$

$$
\begin{gathered}
a^{\prime}=i_{1}+a \quad b^{\prime}=i_{2}+b \\
a^{\prime} b^{\prime}=\left(i_{1}+a\right)\left(i_{2}+b\right)=i_{1} i_{2}+\underbrace{+}_{i_{1}} a+i_{1} b+a b \\
\Rightarrow a^{\prime} b^{\prime}-a b \in I \Rightarrow I+a^{\prime} b^{\prime}=I+a b
\end{gathered}
$$

multi identity: $1+I_{R}$
add identity:I
If $\pi: R \rightarrow R I$ is a ning hom
then $\operatorname{ber}(\pi)=1$
Corvespondemer Let $\varphi: G \rightarrow G^{\prime}$ an onto $g p$ hom
Ihm
Then z a bijective conespondence.

$$
\left\{\begin{array}{l}
\text { subgpss } \\
\text { of } G^{\prime}
\end{array}\right\} \xrightarrow[\varphi^{-1}]{\rightleftarrows}\left[\begin{array}{l}
\text { subyp of } \\
G \operatorname{con} \text { containg } \\
\text { ker甲 }
\end{array}\right\}
$$

given by if H is a kubgp of G
containing ker φ. send H to $\varphi(t)$
And if \mathcal{L} is a subgp of G^{\prime}, send it to

$$
\varphi^{-1}(L)=\{g \in G \mid \varphi(g)=L\}
$$

$\varphi: R \rightarrow R^{\prime}$ onto ring nom $w /$ kerne $K \subset R$ then \exists bijerie coir between ideals in R^{\prime} \& ideals in R, containing K,
If I in R coors to I^{\prime} in R^{\prime}
then $\frac{R}{I} \approx \frac{R I}{I I}$
$1^{\text {st }}$ iso the for rings
Let $f: R \rightarrow R^{\prime}$, a ring hon w/ kemel $K C R$ 1 be an ideal in R.
let $\pi: R \rightarrow \frac{R}{I}$ be the nataval map If $I \subseteq K$, \exists I rig ham $f: \frac{R}{x} \rightarrow R^{\prime}$ sit.

If J is outs $\{I=k, \bar{j}$ is an isomo

Oct 23
$R /\left(a_{1}, \ldots, a_{n}\right)$ the same as putting $\left(a_{1}, \ldots, a_{n}\right)$ as 0 Given $I=(a, b)$, we want to understand $R /(a, b)$

correspondence them
$\Rightarrow \exists$ a way to partner ideals in $f(a)$ with ideas in R containing (a).
ℓ
I is the idea in R containing (a)

$$
\begin{aligned}
& =(a, b) \\
& \left.\frac{R}{I} \approx\left(\frac{R}{(a)}\right) / \pi(I) \quad \pi((a, b))=\pi(b)\right)
\end{aligned}
$$

$$
R /(a, b) \approx(R(a)) / \pi(c b))
$$

ex $\mathbb{Z}[i] /(i-2) \quad(\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\})$ strategy: onto nom $\Rightarrow 1^{\text {st }}$ iso the $\{$ coivesp the
onto $\varphi_{i}: \mathbb{Z}[x] \underset{P(x)}{ } \underset{\sim}{\boldsymbol{Z}}[(i]$

$$
\operatorname{ker} \varphi i=\left(x^{2}+1\right) P(i)
$$

, st iso the $\Rightarrow \mathbb{Z}[\pi] /\left(x^{2}+1\right) \approx \mathbb{Z}[i]$

でき…

$$
l\left(x^{2}+1, x-2\right)
$$

（1）nod put I $[x]$ by $(x-2)$
an auto how：$\varphi_{2}: \mathbb{Z}[x] \rightarrow \mathbb{Z}$ $p \mapsto p(2)$

$$
\operatorname{ker} \varphi_{2}=(x-2)
$$

Then we want to $\bmod \mathbb{Z}$ out by $\varphi_{2}\left(x^{2}+1\right)=5$

$$
\frac{\mathbb{Z}(i]}{(i-2)} \approx \mathbb{Z} / 5 \mathbb{Z}
$$

Oat 26
Adjoining $R=(R, t, \cdot)$ we wort to add a nev e element called "t satisfying $\frac{i^{2}=-1}{a} \begin{gathered}\text { new lamentation }\end{gathered}$

R adjoin is
Proposition $R=$ ring, $f(x)=$ manic poly in R exc
suppose $(f(x))>0$, let $a=\operatorname{deg}(f)$
then let $R[\alpha]$ delete, the quotient ring $R[x 1 / f(x))$
$=$ the ring obtained by adjoining
element " α " to R st. $f(\alpha)=0$
a) The set $\left(1, \alpha, \ldots, \alpha^{n-1}\right)$ is a basis for $R[\alpha]$ over R
i.e. for any $\lambda \in R \in \alpha], \lambda=r_{0} \cdot 1+r_{1} \alpha+\cdots+r_{n-1} \alpha^{n-1}$
for some unique $r_{0}, r_{1}, \ldots, r_{n-1}$
b) Addition in REDI corr. to vector addition
c) Multiplication of linear combinations is given by:
if $\beta_{1}, \beta_{2} \in R e_{a I_{1},}$ lot $g_{1}(x), g_{2}(x)$ be poly's art. $\beta_{1}=g_{1}(\alpha), \beta_{2}, g_{2}(\alpha)$ Use poly division $g_{1} g_{2}=f_{q}+r$ where $\operatorname{deg}(r)<n$
Then $\beta_{1} \beta_{2}=r(\alpha)$
Def'n A ring R is called an integral domain if such a larger ring exists. i.e. if $a, b \in R\left\{a b=O_{R} \Leftrightarrow a=0\right.$ or $b=0$
non-ex $\mathbb{I}_{\text {u }}$
coupsite, eg: 6
If $R=$ any ring, place an equiv rel'n on $R \times R-\left\{O_{R}\right\}$

$$
\begin{aligned}
& (a, b) \sim c c, d) \Leftrightarrow a d=b c \\
& \frac{a}{b}+\frac{c}{d}:=\frac{a d+b c}{b d} \\
& \frac{a}{b} \frac{c}{d}:=\frac{a c}{b d}
\end{aligned}
$$

This forms a field. called field of fractions of the integral domain

Oct 28
Thy creating fields from rings.
Given $R=$ ring, philosophically we might imagine creating a field from R in two nays
i) add elements, yielding sone held F s.t. $R C F$ is subbing ti) kill elenats, yielding a fired F as RII
Note, if R hes zero divisors, (i) is not available
Thus (i) is an integral domain.
Given $R=$ integral domain, consider \sim on $R \times(R-\{0\})$ as:

$$
(a, b) \sim c c, d) \quad \Leftrightarrow \quad a d=b c
$$

Then $F(R)=$ "field of fractions"
W75: if $(a, b)=\left(a^{\prime}, b^{\prime}\right) .(c, d)=\left(c^{\prime}, d^{\prime}\right)$
Then $\left(a d+b_{c}, b d\right)=\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)$
Proof: $w^{\prime} / b:(a d+b c) b^{\prime} d^{\prime}=b d\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right)$
Note: $F(R)$ is a lied θ every won-zere elemat is invertible $\$$ rig axioms ar satisfied.
$\tau(0,1)]$ is the o-elemat

$$
\frac{a}{b} \cdot \frac{b}{a}=\frac{a b}{a b}=\frac{1}{1}
$$

Mapping Principle:
If F is a field contivesing $R=$ integral domain as a sebring, then \exists on injectire ring how $\varphi: F(R) \rightarrow \overline{\mathcal{F}}$, given by $\varphi(\tau a, b])=\varphi\left(\frac{a}{b}\right)=a b^{-1}$

Quick terminology for integral domains:

- u is a unit is an elemat ir Rwy a unlti inverse
- a divides b if $\exists q \in R$ sit. $b=a q$
- $a \neq$ unit is a proper divisor of b if $\exists q \in R, q \neq$ unit sit. $b=a q$
- $a\{b$ are associates if each divides the other, or, if $b=u a, u=$ unit
- a is irreducible if af unit $\{$ it has no proper divisors
- a is prime if $a \neq$ suit if whenever flab, pa or pl

Lena $\quad R=$ integral domain
then w is a unit $\Leftrightarrow(u)=R$
a divides $b \quad \theta(b) C(a)$
a is a proper divisor of $b \Leftrightarrow b \notin(a) \notin R$
$a\{b$ are associates $\Leftrightarrow(a)=(b)$
a is irreducible $\Leftrightarrow(a) \neq R q^{\prime} \nRightarrow$ an ideal $\left.c c\right)$

$$
\text { st. }(a) \notin(c) \notin R
$$

$a B$

Maximal ideals

$$
R=a n y \text { ring. }
$$

A maximal ideal M in R is an ideal
$M \neq R$ int. if 1 contains M
either $I=M$ or $I=R$
Proposition: B / I is a field $\Leftrightarrow I$ is a maximal ideal
Pf:
Lemma: R is a field $\Leftrightarrow R$ contains precisely 2 ideals.

Assume 1 is maxi in R
Consider the natural map $\pi: R \rightarrow B_{I}$ conto ring head corr. theorem \Rightarrow \{ideals in $\left.B_{1}\right\} \leftrightarrow\left\{\begin{array}{c}\text { ideals of } \\ \text { containing }\end{array}\right\}$ $\left.\begin{array}{l}\text { containing } \\ \text { hera }=1\end{array}\right\}$

1 maximal \Rightarrow only ideals in B_{1} are 0 -idal $\left\{\frac{R}{I}\right.$ By lemma, $\frac{\beta_{1}}{}$ is a field.
$B / 7$ is a field \Rightarrow no proper ideals in R/I corr. the \Rightarrow proper sided in R containing? $\Rightarrow 1$ is maximal.
prop
a) Let $\varphi: R \rightarrow R^{\prime}$ subjective ring how

$$
\begin{aligned}
& \varphi(r+b)=\varphi(r)+\varphi(s) \\
& \varphi(r)=\varphi(r) \varphi(s) \\
& \varphi(1 R)=1 R^{\prime}
\end{aligned}
$$

let $I=\operatorname{ker} \varphi=\left\{r \in R \mid \varphi(r)=O_{R^{\prime}}\right\}$
recall: benet of any ring tom is ideal
Then R^{\prime} is a field $\Leftrightarrow I$ is a maximal ideal
Proof A ring is a field \Leftrightarrow it contains precisety Lelenats
$S_{\theta_{R}}^{\pi} g\{R$ as ideals
(E) Suppose R contains no other ideals $\left\{r \in R, r \neq O_{R}\right.$

$$
\begin{aligned}
& \Rightarrow(r) \neq\left\{0_{R}\right\} \\
& \Rightarrow(r)=R
\end{aligned}
$$

So, $I_{R} \in(r)$
so $\exists x \in R$ ht.
$I_{R}=x \gamma \Rightarrow x$ is multi inverse

$$
\Rightarrow \gamma \text { is invertible }
$$

(-) lat J be an ideal

$$
W / S: J=\left\{O_{R} J \text { or } R\right.
$$

suppose J 才 $\left\{0_{R}\right\}$
Then $\exists r \in J, r \neq O_{R}$
R is a field $\Rightarrow r$ has a multi inverse, x
J is an ideal $\Rightarrow x \gamma \in J \Rightarrow I_{R} \in J \Rightarrow s \cdot I_{R} \in J$

$$
\Rightarrow \quad J=R
$$

K arbitrary
correspondence theorem
I onto ham, \exists bijective convespondeve

$$
\begin{aligned}
\left\{\begin{array}{l}
\text { ideals in } R \\
\text { containing } \operatorname{ker} \varphi
\end{array}\right\} & \longleftrightarrow\left\{\begin{array}{l}
\text { ideals } \\
\text { in } R^{\prime}
\end{array}\right\} \\
I & \longleftrightarrow \varphi(I) \\
\varphi^{-1}(J) & \longleftrightarrow J
\end{aligned}
$$

ideals in R^{\prime} correspond in $R^{\prime} \Rightarrow X$ any paper ideals of R, (containing kerch \Rightarrow Keck is maxima).
b) $\quad 1$ is maximal $\Leftrightarrow B / I$ is a field

$$
\begin{array}{r}
\left\{r+I \mid r \in R j r+1=r^{\prime}+1\right. \\
r+r^{-1} \in I \\
r-r^{\prime} \in I
\end{array}
$$

from (a): R / I is a field
(E) $R / 2$ is a field $9 \nexists$ any popes ideal in R / I corespondece $\Rightarrow \neq$ any pope ideals in R, containing her π \Rightarrow bert a is maximal
c) the zero ideal of $\{0 R\}$ of R is maximal $\Leftrightarrow R$ is a field Pf: Suppose $\left\{0_{R}\right\}$ is max $^{\prime} l \Rightarrow \nexists$ a proper ideal, properly containing $\left\{0_{R}\right\} \Rightarrow R$ is a field, Conversely, if R is a field, it doesn't Contain a proper ideal,$\neq\left\{_{0}\right\} \Rightarrow\left\{_{\left.0_{R}\right\}}\right.$ is max il.

Nov 13
Reminder If $R=r i n g, r \in R$ is called irreducible if $\# x, y \in R$, neither of which ave units (neither x nor y is multi invertible) nit. $r=x y$

1) S ₹ unit
$s \in R$ B prime if y_{2} veneer slay, six or sly
Question. if f is reducible in $Q_{2 x>}$,
Lemur
a) If $r(x)=b_{1} x+b_{0} \in \mathbb{Z}[x]$ divides of $f \in \mathbb{Z}[x]$, $J=a_{n} x^{n}+\cdots+a_{0}$, then $b_{1} \mid a_{n}\left\{b_{0} \mid a_{0}\right.$
b) Assume $b_{1} \neq 0$. Then $r(x)=b_{1} x+b_{0}$ divides $f \in \mathbb{Z}[x]$
$\Leftrightarrow-b_{0} / b_{1}$ is a root of \mathcal{J}... $f\left(\frac{-b_{0}}{b_{1}}\right)=0$
c) A rational root of a nonic poly in $2[x]$ is an integer weft of highest term is 1
Proof
a)

$$
\text { i.e. } \begin{aligned}
\quad J & =r(x) \cdot q(x) t \text { som poly } \\
a_{0} & =q_{0} b_{0} \quad \Rightarrow b_{0} \mid a_{0} \\
a_{n} & =b_{1} q_{m} \quad \Rightarrow b_{1} \mid a_{n}
\end{aligned}
$$

b) idea: $f\left(-\frac{b a}{b_{1}}\right)=0 \Leftrightarrow\left(x-\frac{b_{0}}{b_{1}}\right)$ is a factor of f in $Q \tau_{x}$
c) A rational root of a nonic integer poly is an integer

Pf : suppose a / b is a root of $f \in \mathbb{Z} \subset x]$
i.e. $f\left(\frac{a}{b}\right)=0 \Rightarrow b x-a$ divides f

$$
\Rightarrow b \left\lvert\, a_{n} \Rightarrow b= \pm 1 \Rightarrow \frac{a}{b} \in \mathbb{Z}\right.
$$

Defin A poly is primitive if $a_{n}>0\left\{\operatorname{gcd}\left(a_{n}, \ldots, a_{0}\right)=1\right.$
Lemma Let $f \in \mathbb{Z} \subset x \mathcal{I}, \operatorname{deg}(f)>0\left\{a_{n}>0\right.$.
Then TFAE:
i) f is primitive
ir) \forall prime numbers $p \in \mathbb{Z}, p$ doesn't divide f as elemats of $\mathbb{E} \subset x I$
inti) if $\psi_{p}: \mathbb{Z}[x] \rightarrow \mathbb{Z} / P \mathbb{Z}[x]$ given nod p on each coeff. then $f \notin \operatorname{ker}\left(\psi_{p}\right) \forall p$
a) $n \in \mathbb{Z}$ is prime in $\mathbb{Z}[\nsubseteq \in \in$ is prime in \mathbb{Z}
b) Gauss's Lemma:

The product of primitive poly's primitive
P
claim. If $f(x)$ is prime, it's irreducible
Pf: suppose. $\exists a(x), b(x)$ s.t. $f(x)=a(x) b(x) \quad(a, b \neq \pm 1)$
f prime $\Rightarrow f$ divides either a or b
assume it's a

$$
\begin{aligned}
\text { fla } \Rightarrow a=f c \quad J & =f c b \\
1 & =c b \text { (from } Q) \\
& b \text { is unit. }
\end{aligned}
$$

a) Suppose n is prime in \mathbb{Z} [x]
claim: n is irreducible in $\mathbb{Z e x r}$
Note: \mathbb{Z} ixia is integral domain (ie. no zero divisor)

$$
\begin{aligned}
& f g=0 \\
& f=0 \text { or } g=0
\end{aligned}
$$

Lemma: If R is an integral domain $q r \in R$ is prime
γ is irreducible

$$
\text { wTs: nit or } n \mid g
$$

I/nzt xI integral domain $\Rightarrow \psi_{n}(f)=0$
or $\psi_{n}(g)=0$
citr a field)
$n \mid f$ $n \mid g$
b) suppose fig are primitive.
\Rightarrow leading weft are positive
\Rightarrow no prime divides all weft's of $f \quad \psi^{\text {same } p \text { ? }}$
Recall p divides $f g \Leftrightarrow p l f$ or $p l g$
Lemma. $\quad c \in \mathbb{Z} \Leftrightarrow f \in \mathbb{Z}[x]\{c=$ ged cost's of $f\}$

Nov 18
Th m
a) Let $f_{0}(x)=$ primitive $\{g \in \mathbb{Z}[x]$. Then of fol in $Q[x z$.
then fold in $\mathbb{Z}[x]$
b) If $f, g \in \mathbb{Z}[x \mathcal{I}$ shave a common won-constant factor in $\mathbb{Q} \tau \times \mathcal{1}$, then so in \mathbb{Z} ex
B

Recall that $\exists-a$ way to express $h(x)$ as $h(x)=c \cdot h_{0}(x)$ where $c \in \mathbb{Q}$, ho $(x)=$ primitive

$$
\begin{aligned}
& g=f_{0} \cdot\left(c h_{0}\right) \\
& g=c t_{0} h_{0} \rightarrow \text { primitive }
\end{aligned}
$$

\exists : to express $g(x)$ as $g(x)=c^{\prime} \cdot g_{0}(x)$ where $c^{\prime} \in Q$ $g .(x)$ is prim AND since $\left.g \in \mathbb{E}[x], c^{\prime}= \pm g c d e c o f f^{\prime} i g\right)$
Uniqueness $\Rightarrow c=c^{\prime}\left\{\right.$ fo $h_{0}=g_{0}$
b) Assume $f, g \in \mathbb{Z}[x]$ share a you-constant common factor

By Monday, \exists ! way to express $h \in \mathbb{Q} \operatorname{exI}$
as $h(x)=c \cdot h_{0}(x), c \in \mathbb{Q}$
$h_{0}=$ primitive.
By assumption, $h \mid f\} h \mid g$ in $\mathbb{Q}[\nabla>$.
ho wolf ; holy in \mathbb{Q} [x] $\stackrel{\text { aral }}{\Rightarrow}$ golf h holy in \mathbb{Z} ex z
Than. WTS: $f(x)$ is introducible $\Rightarrow f$ is prim \uparrow f is imeducible in Q xI
Assume $\exists h, g \in \mathbb{Q}[x]$ s.t. $f=h(x) g(x)$
I ways to express $h\left\{g\right.$ as $h=c_{1} h_{0}(x) \quad c_{1}, c_{2} \in \mathbb{Q}$

$$
f=c_{1} c_{2} h_{0}(x) g_{0}(x)=(1)-f \quad g=c_{2} g_{0}(x) \quad h_{0}, g_{0}=\text { prim ply }
$$

Prop: Let $f(x)=a_{n} x^{n}+\ldots+a_{0} \in \mathbb{Z}[x]$, let $p=$ prime \#, Suppose $p \backslash a_{n}$. Then if $\psi_{p}(f)=\left(a_{n}\right.$ moll $) x^{n}+\ldots+\left(a_{0}\right.$ mad $) \in \mathbb{Z}_{p}[x]$ is irreducible in $\mathbb{Z} / p \mathbb{Z}[x]$, then f also is in $\mathbb{Z}[x]$ (actually, even in $\mathbb{Q}[x]$).

Note: For any n, \exists s number of poly's in $Q[x] w / d e g \leq n$.
BUT, \exists finite \# of poly's in Epa $[x]$ w/ deg $\leq n$.
Pf. Assume J is irreducible in $Q[x]$.
i.e. $h . g \operatorname{deg}(h) \operatorname{deg}(h)>0$
$\{f=g h$ of $g, h \in Q \in x \geq, B y$ all of our hard work.
can assume $g, h \in \mathbb{Z}[x]$
Note: $\operatorname{deg} f=\operatorname{deg}(g)+\operatorname{deg}(h)$

$$
\begin{aligned}
& \operatorname{deg}\left(\psi_{p}\left(q\left(x_{1}\right)\right) \leq \operatorname{deg}\left(q\left(x_{1}\right)\right.\right. \\
& p X a_{n} \Rightarrow \operatorname{deg}\left(\psi_{p}(f)\right)=\operatorname{deg}(f)
\end{aligned}
$$

ψ_{p} is a ring how $\Rightarrow \psi_{p}(f)=\psi_{p}(g) \psi_{p}(h)$

$$
\begin{gathered}
\operatorname{deg}\left(\psi_{p}(g \mid) \leq \operatorname{deg}(g)>0 \quad\left\{\operatorname{deg}\left(\psi_{p}(h)\right) \leq \operatorname{deg}(h)>0\right.\right. \\
\left\{\begin{array}{c}
\left\{\operatorname{deg}(f)=\operatorname{deg}\left(\psi_{p}(f)\right) \quad\left\{\begin{array}{c}
p
\end{array}\right)(f)=\psi_{p}(g) \psi_{p}(h)\right. \\
\Rightarrow \operatorname{deg}\left(\psi_{p}(f)\right)=\operatorname{deg}\left(\psi_{p}(g)\right)+\operatorname{deg}\left(\psi_{p}\left(h_{1}\right)\right) \\
\operatorname{d}^{\prime} \operatorname{le}(f) \quad>0
\end{array}\right.
\end{gathered}
$$

Note. converse fails:
ie. \exists inducible $f(x) \in Q_{2 x a}$ that's reducible in $Z / n_{2}\left[x^{2}\right.$

A list of reducibility test!
i) rational root

If $\frac{a}{b} \in \mathbb{Q}$ is a root of $f(\Rightarrow c b x-c)$ is a factor of f). then $a \mid c_{0}\left\{b \mid c_{n}\right.$
ii) Deg 2 or 3 test: If $\operatorname{deg} f=2$ or 3 then f reducible in $Q[x] \Rightarrow f$ has a nest in Q (also works fr $\mathbb{Z} / p z$)
iii integer test: f ineducsibc over $\mathbb{Q} \Leftrightarrow$ over \mathbb{Z} iv) mod P test.
$\left.\psi_{p}(f) \in \mathbb{Z} / D_{\mathbb{Z}} \tau x\right]$ irreducible ore $\mathbb{Z} / p Z$
$\Rightarrow \operatorname{irreducible}$ in \mathbb{Z}
v) Einstein:
P sit $p \nmid C_{n}, p \mid c_{n}-1, \ldots, c_{0} q^{\prime} p^{2} X C_{0}$
then f is inredverble

Nov 11
P) Eisentein's criterion.

Assume f is reducible over \&

$$
\begin{aligned}
& \Rightarrow \exists g \cdot h \in \mathbb{Z}[x) \text { st. } f=g n \\
& \text { let } \bar{f}=\psi_{p}(f)=\left(a_{n} \bmod p\right) x^{n}+\ldots+\left(a_{0} \bmod p\right) \in \mathbb{p} \mathbb{Z}[x] \\
& \text { plan...., } a_{n-1} \Rightarrow \bar{f}=\left(a_{n} \bmod p\right) x^{n}=\bar{a}_{n} x^{n}
\end{aligned}
$$

ψ_{p} is a ring rom $\Rightarrow \bar{j}=\bar{g} \bar{h}$
$Z / P Z=$ field so if $c k=0$, one of c, k is 0

$$
\bar{g}=\operatorname{cg}_{g} x^{r} \quad \frac{1}{4}=c_{n} x^{s}
$$

\downarrow
constant term, g_{0} of g, has to be a unctiple of p

$$
\underset{N T}{g_{N} h_{0}}=a_{0} \text {, is a multiple of } p^{2}
$$

a multiof p
Defin If $K=$ field \& $F C K$ is a subfield
we say that k is a field extension of F p we wite k / F

Deft Suppose $\alpha \in K, K / F, \alpha$ is algebraic over F if \exists a wovic poly $f \in F$ in? sit. $f(\alpha)=0_{k}$ if α is not alg. over F, α is called transcendewal over F

Lemma Given $\alpha \in K, K / F, \alpha$ is algebraic over F $\Leftrightarrow \varphi_{r}: F[x] \rightarrow K$ is not one-to-are
where $\varphi_{a}(p(x))=p(\alpha)$
Pf: $\quad \varphi_{\alpha}$ not one + one $\Leftrightarrow \operatorname{ber}\left(\varphi_{\gamma}\right) \neq\{0\} \Leftrightarrow \exists f \in F_{[x]}$

$$
\text { st. } \varphi_{\sigma}(f)=0
$$

so Suppose $\alpha \in K$ is algebvic over F
$F[x]=P 1 D$ (principal ideal domain) $\operatorname{ber}\left(\varphi_{\gamma}\right)=(f(x)), \quad j \in F[x]$
proposition assure $\alpha \in k$ algebraic over F
Then TFAE for a given manic poly $f \in F[x]$:
i) $f=$ manic poly of smallest deg in $F[x]$ st. $f(\alpha)=0$
it) f is irreducible in $F[x]$ \& $f(\alpha)=0$
iii) $(f(x))=\operatorname{ker}_{\alpha}\{(f(x))$ is maximal
iv) $f(\alpha)=0 \quad\{$ if $g \in F i x I$ hut. $g(\alpha)=0 \Rightarrow f l g$
$(i) \rightarrow(i i)=$
suppose $f=$ manic pdt of hwallest deg st. $f(\alpha)=0$ suppose $f=g h, g, h \in F[x] . f(\alpha)=0 \Rightarrow g(\alpha) h(\alpha)=0$

$$
\begin{aligned}
& \Rightarrow g(\alpha)=0 \text { or } h(\alpha)=0 \\
& f=g h \Rightarrow \operatorname{deg} f=\operatorname{deg}(g)+\operatorname{deg}(h)
\end{aligned}
$$

\Rightarrow if either $\operatorname{deg}(g)$ or $\operatorname{deg}(h)>0$
beth $\operatorname{deg}(g) \not{ }_{\psi}+\operatorname{deg}(h)$ is $<\operatorname{deg}(f)$ contradicts f is smallest
(ii) \Rightarrow (iii) Assume $f(\alpha)=0 \quad \frac{1}{1} f$ is irreducible over F

UTS $\left(f\left(x_{1}\right)\right.$ is maximal in $F[x]$.
If not, \exists ideal I in $F i x I$ sit. $\mathcal{f}(x) \notin I \& F[x]$

$$
\begin{aligned}
& (f) c(g) \Rightarrow f \in(g) \Rightarrow \exists r \text { sit. } f=r g \\
& \text { if } \operatorname{deg}(r)=0, r=\text { unit }\left\{g=r^{-1} \cdot F \Rightarrow g \in(f)\right.
\end{aligned}
$$

$$
g=f
$$

Nov 30
Field extension
irreducible sonic poly $f(x)$ w/ weft in F imagine "adpining an abstract element α, secisisty $f(\alpha)=0$ the $F(\alpha)$ is the smallest field containg beth $F i \alpha$ $F(\alpha)=K$ wand be a field extension of F

Given $K / F, \alpha \in K$
suppose $\alpha=$ algebraic over F

$$
\text { re } \exists f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0} \in F E x=\{f(\alpha)=0
$$

Then \exists a poly, $g(x) S t$
i) $g=$ manic poly of smallest deg $w / g \in F \tau \times 2$

$$
\text { ht. } g(\alpha)=0
$$

$\left.i^{i}\right) \mathrm{g}$ is ineduccible over F
iii) $(g(x \mid)=$ ideal generated by g in $F[x]$, is maxine l
$i v)$ if $f(\alpha)=0$, thong g If
g is the ironed. poly for α over F
degree of α is the deg of g
$F(\alpha) \leq K$
"smallest subfield of K containity $F \& \alpha$
Romberber

$$
\begin{aligned}
& \varphi_{\alpha}: F[x] \rightarrow K \\
& P(x) \mapsto P(\alpha) \\
& \left.\operatorname{Im}\left(\varphi_{\alpha}\right)=q x \in K \mid x=b_{n} \alpha^{n}+b_{n-1} \alpha^{n-1}+\cdots+b_{0}\right\}
\end{aligned}
$$

FEDI = ring! (integral domain!
$F=$ field $S_{0} F[x I$ is an integral domain $F[\alpha] \cong F[\times 2 /$ hos.
$F(\alpha)$ is just a freed of fraction of $F[\alpha]$

Prop Let $\alpha \in K, K / F, \alpha=\operatorname{alg}$. over $F\{f(x)=$ irreducible poly for α over F. Then consider:
$\psi: \frac{F_{[x]}}{(f)} \rightarrow F(\alpha I$ given $b y$
$\psi(p(x)+(f))=p(\alpha)$
Then ψ_{a} is an Bono
so FAXI is actuary a field
Does this make sense?

$$
\text { If } P(x)+(f)=q(x)+(f)
$$

$$
p+(t)=g+(t)
$$

$$
\Rightarrow p-q \in(f)
$$ because (f) is maxine

$$
\Rightarrow p-q=g(x) f(x)
$$

$$
\begin{aligned}
& \Rightarrow F[-1 /(f) \text { is a field } \\
& F(\alpha)=F[\alpha]
\end{aligned}
$$

$$
\Rightarrow(p-q)(\alpha)=g(\alpha) f(\alpha)=0
$$

$$
p(\alpha)-q(h)
$$

not the when $F \neq$ field
if (f) maxine $\Rightarrow F(x y /(f)$ is a tied consider $\varphi_{2}: F[m] \rightarrow K$

$$
p(x) \mapsto p(\alpha)
$$

$\varphi \alpha$ is auto
$1^{\text {st }}$ sone the $\Rightarrow \frac{F[\pi]}{\operatorname{ker}\left(\varphi_{\alpha}\right)} \approx F[\alpha]$

$$
\operatorname{ker}\left(\varphi_{\alpha}\right)=(f)
$$

$$
F[n] \xrightarrow{\varphi_{\alpha}} F_{t \alpha]}
$$

$$
\psi\left(p(x)+(f 1)=\varphi_{\alpha}(p) \Rightarrow \varphi=\psi_{\alpha}\right.
$$

From 11.5 .5 in Artin
Fld1 is a vestor space aper F
$\left(1, \alpha, \ldots, \alpha^{n-1}\right)$ is a basis for $F C \alpha I$ aen F
$n=\operatorname{deg}(f)$
$\Rightarrow F(\alpha)$ is a vector upace aer F of dimansita $=\operatorname{deg}(\alpha)$

Dec 2
Deft Given K / F, the degree of K over F, $\operatorname{deg}_{F} K$, is $\operatorname{dim}_{F}(K)=\operatorname{dim}$ 'n of k as a F-vector space $\operatorname{deg}_{F} K=2 \quad K / F B$ called a quadratic extension

Prop If $\alpha \in K, K / F, \alpha=\operatorname{alg}$. over F
then $[F(\alpha): F]$ = deg of ir ed poly for α aver F
Lena i) K / F has degree $1 \Leftrightarrow K=F$
ii) $\alpha \in K$ has degree 1 over $F \Leftrightarrow \alpha \in F$
if If $\operatorname{dim}_{f} k=1$, any non zee element if k is a basis so $1 \in K$ is a basis. so all f g K is of the $\underset{\in F}{\text { form (isth inf). }}$ l
If $F=k \Rightarrow\left\{13\right.$ is a basis for K over $F \Rightarrow$ deg $_{F} k=1$
it) WIS $\alpha \in K$ has $\operatorname{deg} 1$ wee $F \Leftrightarrow \alpha \in F$
$\operatorname{deg} \alpha$ over $F=\operatorname{deg}$ of irred poly for α our F
α has deg $1 \Leftrightarrow$ this poly is $x-\alpha \Rightarrow \alpha \in F$
If $\alpha \in F$, then $x-\alpha$ is the ind $d d y$ for α over F
Prop Assume characteristic (F) $\neq 2$, iss. $1+1 \neq 0$.
Then any quadratic extension K over F can be obtained by adjoining a square root, i.e. $K=F(\delta)$, where $\delta^{2}=d,\{d \in F$ The $F(\delta)$ is a quadratic extension

Pf Let $\alpha \in K, \alpha \notin F$, when $K=$ quadratic extension of F claim: $(1, \alpha)$ is linearly independent over I

$$
\begin{aligned}
& \nexists x_{1}, x_{2} \in F \text { a.t. } x_{1} \cdot 1+x_{2} \alpha=0 \\
& \Rightarrow x_{2} h=-x_{1} \text {. If } x_{2}=0 \Rightarrow 0>-x_{1} \Rightarrow x_{1}=0 \\
& \Rightarrow x_{2} \pm 0, \quad x_{2} \in F \Rightarrow x_{2}^{-1}=F \Rightarrow \alpha=-x_{2}^{-1} x_{1} \\
& {[K: F I=2 \quad \Rightarrow(1, \alpha) \text { is a basis! }}
\end{aligned}
$$

$\Rightarrow \alpha^{2}$ has to be a leer combo of $(1, \alpha)$
ho $\exists b, c \in F$ sit. $\alpha^{2}=b \alpha+c \Rightarrow \alpha$ is a root of $f(x)=x^{2}-b x-c$ $\alpha A F \Rightarrow f$ is inducible over F

Quadratic farmida: $x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$ solves $a x^{2}+b x+c=0$ This works arr any field so long as $2 \neq 0$
set $\delta=+\sqrt{b^{2}-4 a c}, \quad$ claim: $\delta \in K$

Dec 4
Recap: If $\operatorname{char}(F) \neq 2$, ie. $1+1 \neq 0,1$ if K / F is a quadratic field extension then $\exists \delta \in K, S \& F$ but $\delta^{2} \in F\{K=F(\delta)$

1) pick some $\alpha \in K, \alpha \in F(\alpha$ exists because $K=F C \Rightarrow[K: F]=1)$
2) $(1, \alpha)$ is linearly independent, i.e. if $x_{1}, x_{2} \in F$,
then $x_{1} \cdot 1+x_{2} \cdot \alpha=0$

$$
\Rightarrow \tau_{1}=x_{2}=0
$$

6) Given $f(x)=a x^{2}+b x+c$, where $f \in F[x]$, se long as $\quad \operatorname{chai}(F) \neq 2, a^{-1} \cdot(1+1)^{-1} \cdot\left(-b \pm \sqrt{b^{2}-4 c c}\right)$ solves $f(x)=0$
7) In our situation, $f(x)=x^{2}-b x-c$ daim: 1 st k st. $\delta^{2}=6^{2}-4 C$
8) $\delta=2 \alpha-b$ satisfies $s^{2}=b^{2}+4 C$
claim: $\delta \in F(\alpha)$
similarly/ $\alpha \in F(\delta) \quad$ (because $\alpha=2^{-1} \cdot\left(\delta+b_{1}\right)$

$$
\begin{aligned}
& F(\alpha) \subseteq F(\delta) \\
& F(\delta) \subseteq F(\alpha) \Rightarrow F(\alpha)=F(\delta)
\end{aligned}
$$

Howard, $F(\alpha)=k$. since it's a 2 dimil subspace of (k) which is isself only 2 dinil

$$
\Rightarrow F(S)=K
$$

The FCKCL fields
Then $\tau L=F コ=$ CL：KフてK：Fコ
Pf．Let $B=\left(\beta, \ldots, \beta_{n}\right)=$ basis for L as a K－vector space and let $\Lambda=\left(\alpha_{1}, \ldots, \alpha_{m}\right)=$ basis for k as an F－vector space．
well $\operatorname{shav}\left\{\alpha_{i} \beta_{j}\right\}_{1 \leq j \leq m}^{1 \leq i<m}$ is a basis for L as an F－vetor space

1）$\left\{\alpha_{i} B j\right\}$ is a spanning set for L over F

2）$\left\{\alpha_{i} \beta_{y}\right\}$ are linearly inge pendent aver F
（1）$\left\{\alpha_{i} \beta_{j}\right\}$ is a spanning set fir L over F Let $\gamma \in L$ ．Since $\left(\beta_{1}, \ldots, \beta_{n}\right)$ spans L as a K－vector space，\exists $b_{1}, \ldots, b_{n} \in K$ sit．$\gamma=b_{1} \beta_{1}+\ldots+b_{n} \beta_{n}$ ．Since $K=F-v . s, \exists$ ， for each $i, \exists a_{i, 1}, \ldots, a_{i, m}$ s．t．$b_{i}=a_{i, 1} \alpha_{1}+\ldots+\alpha_{i, m} \alpha_{m}$ ，

$$
\begin{aligned}
\Rightarrow \gamma= & \left(a_{1,}, \alpha_{1}+\ldots+a_{1, m} \alpha_{m}\right) \beta_{1}+\ldots+\left(a_{n, 1} \alpha_{1}+\ldots+a_{n, m} \alpha_{m}\right) \beta_{n} \\
& =\sum_{i, \gamma} a_{i, j} \alpha_{i} \beta_{j}
\end{aligned}
$$

（2）$\left\{\alpha_{i} \beta_{j}\right\}$ are linearly independent over $F . L$
Assume \exists a linear combo $\sum_{i, j} a_{i, j} \alpha_{i} \beta_{j}=0$. UTs：$a_{i, j}=0 \underset{\forall j}{\forall i,}$
Since k，is linearly ind．over k_{1} for each $j, \sum_{i} a_{i, j} \alpha_{i}=0$ ．
Since L lin，ind，over F ，

Dec 7
consequences from last time
a) $F C K, K / F$ is a finite extension of deg n $\{\alpha \in K$. Then α is algebric over F. $\{\operatorname{deg}(\alpha) \mid n$

$$
\begin{aligned}
& \operatorname{deg}(\alpha)=\lceil F(\alpha): F \beth \\
& \lceil K: F I=n=\lceil K: F(\alpha)\rceil\lceil F(\alpha): F \beth
\end{aligned}
$$

b) $F C F^{\prime} C L \quad\{\alpha \in L$ algebraic over F.

Then α is also algebric over F^{\prime}
If $\operatorname{deg}_{F}(\alpha)=d$, then $\operatorname{deg}_{p^{\prime}}(\alpha) \leq d$ α is a neat of $f \in F_{t \times 2} \Rightarrow f_{(g)}$ is a multiple of whatever the ined. poly ${ }^{(g)}$ is for α ir F^{\prime} Ex 2 $\Rightarrow f=g(x) h(x)$ for some $h(x) \in F^{\prime}(x) \Rightarrow$ deg $\Rightarrow \operatorname{deg}(g) \leq \operatorname{deg}(\rho)$
c) If $k=F\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{1}, \ldots, \alpha_{n}$ alg. over F then $\tau K: F \geq<\infty$

$$
=\left\lceil k: F_{n-1}\right] \tau F_{n-1}: F_{u-2} I \cdots \tau_{\left.F_{1}: F\right]}
$$

d) If K / F, then alg. elements in K / F form a subfield UTS: $\alpha, \beta \in K$ alg. over F, then $\alpha+\beta\{\alpha \beta$ is also alg. over F.
$\alpha+\beta ; \alpha \beta$ are both elements of $F(\alpha, \beta)$
since $\tau F(\alpha, \beta): F 工<\infty$ by (c)
by (a) any elemat in a finite extension over F is alg. over F

Lemma: Let $R=$ extension of F, let $K \sum_{1}^{1} \subset \neq$, both finite extensions of F, Let $k^{\prime}=$ subfield of k generated by

Let $\left[K^{\prime}: F\right]=N,[K: F]=m$
$\left[F^{\prime}: F\right]=n$. Then

$$
m, n \mid N, \frac{1}{\varepsilon} N \leq n m, \frac{1}{\varepsilon}
$$

if $\operatorname{gcd}(n, m)=1$, then $N=n m$.
pf of lemma:
The green consequences \Rightarrow any finitix extension is gereaubac
k^{\prime} / k is a finite extension, because
finite!
finite!
$k^{\prime}=$ field greeted by 2 finite extensions
over $F \Rightarrow K / F$ is finite \Rightarrow
k^{\prime} / k is finite. Similarly, k^{\prime} / F^{\prime} finite as well.
Multiplicative formula \Rightarrow

$$
N=\left[k^{\prime}: F\right]=\left[k^{\prime}: k\right][k: F]=\left[k^{\prime}: k\right] \cdot m
$$

$$
\Rightarrow m \mid N . \text { Similarly, } n \backslash N \text {. }
$$

Now, suppose F^{\prime} is generated by one element, β, over F, ie., $F^{\prime}=F(\beta)$.
Then $K^{\prime}=K(\beta)$ why? well, $K=F($ some staff $), F^{\prime}=F(\beta)$.

$$
k^{\prime}=F(\text { some staff }, \beta)=k(\beta) \text {. }
$$

consequence ($b) \Rightarrow \operatorname{deg}_{k} \beta=\subset K^{\prime}: K J \leq \operatorname{deg}_{\beta} F=n$

$$
\Rightarrow N \leq n m
$$

argument $\Rightarrow \tau K^{\prime}: F 工$ is divisible by $\operatorname{lcm}(m, n)$ which if $\operatorname{gcd}(m, n)=1$, is $m n$

Dec 9
Lemma:
(a) γ is a not of $f \in F[\times] \Leftrightarrow$ the coif's of f yield a linear dependence for powers of g, i.e.,

$$
f(x)=a_{n} x^{n}+\ldots+a_{0}, \quad f(y)=0 \Leftrightarrow \underbrace{a_{n} \gamma^{n}+\ldots+a_{1} y+a_{0}}_{\text {a linear dependence }}=0
$$

(b) Suppose $\alpha_{1} \beta$ alg, over $F \sum_{1}^{\prime} \quad \operatorname{deg}_{F}(\alpha)=d_{1}, \operatorname{deg}_{F}(\beta)=d_{2}$.

Then the $d_{1} d_{2}$ monomials $\alpha^{i} \beta^{j} \quad\left(1 \leq i \leq d_{1}, 1 \leq j \leq d_{2}\right)$ span $F(\alpha, \beta)$ as an F-vector space.

Lemma \Rightarrow we can always find a poly which has $\alpha+\beta$ as a root, once we have irred. poly's for $\alpha \xi^{\frac{1}{2} \beta}$.
How? Given the minimal poly's for α, β_{1} we have their degrees. So let $\operatorname{deg} \alpha=d_{1}, \operatorname{deg} \beta=d_{2}$. Given
$\gamma \in F(\alpha, \beta), \quad(b) \Rightarrow$ you can express each of

$$
\left.\operatorname{ceg}_{j}, \gamma=\alpha+\beta\right) \quad 1, \gamma_{1}, \gamma^{2}, \ldots, \gamma^{n} \text { as linear combo's }
$$

of $\left\{\alpha^{i} \beta^{j}\right\}_{\substack{1 \leq i \leq d_{1} \\ 1 \leq j \leq d_{2}}}$. So, when $n=d_{1} d_{2}$,
we have More vectors than elements in the spanning set
Note: we always have
This rears \mathbb{Q} can be

$$
\pi i \mathbb{Q}[x] \rightarrow \mathbb{Q}[x]
$$

Claim: $F=$ field, $I=(f(x))$ in $F[x]$, then - subfield of $R[x]$
$\pi: F[x] \rightarrow \frac{F[x]}{(f(x))}$ is $1-1$ WHEN wee restrict to constants.
i.e., if $a_{1}, a_{2} \in F$, then $a_{1} \neq a_{2} \Rightarrow \pi\left(a_{1}\right) \neq \pi\left(a_{2}\right)$

If $\pi\left(a_{1}\right)=\pi\left(a_{2}\right), \quad a_{1}+(f)=a_{2}+(f) \Leftrightarrow a_{1}-a_{2} \in(f)$

$$
\Longrightarrow(f)=F[x] \Leftrightarrow f \text { is itself a constant. }
$$

Dec 11
Lemur a
$F=$ fid d, $f(x) G F[x \beth$ irreducible over F
Then in the field $k=F(x] /(f(x))$
$[\pi(x)$ is a root of $f(x)]$

$$
\begin{aligned}
& \pi: F E x] \rightarrow F[x] / c f(x))=K \\
& x \mapsto x+(f(x))=\pi(x) \\
& \mathbb{R}_{1} \text { suppose } f(x)=a_{n} x^{n}+\cdots+a_{0} \quad a_{i} \in F \\
& \left(a_{n}+(f)\right)(x+1 f 1)^{n}+\left(a_{n-1}+(f)(x+(f))^{n+1}\right.
\end{aligned}
$$

$F_{C x} /(f(x))$ has an elemat that is a root $f(x)$
Definition $F=$ tied: a poly $f \in F i x z$ splits completely over some field extension k if f factor into linear pieces $w /$ coff in K

Lemna $F=$ field, $f=$ nonic poly in Fix], $\operatorname{deg}(f)>0$, Then \exists a field extension k in which f splits romplexery

Finite Fields
Let $p=$ prim. Let $r \in N, q=p^{r}$
a) I a field of order q. Any 2 fields of order q are isomorphic.
b) If $F=$ finite field. $I F=9$ for some ir.
c) If $|F|=9$, the every element is a root of $x^{9}-x$
d) The inducible factors of $x^{q}-x$ in $\mathbb{E} / P \mathbb{E}$ are exoutly the irreducible polys of FinD, $|F|=p^{r}$ satisfying property that their degree divides r
e) Let $F^{*}=g p$ of multi units in F

$$
=g p \text { of } \operatorname{erd} d r q-1
$$

Lx's a cyclic gp:
J) $F=$ finite field, $|F|=p^{2}$
then F contains a subfield of size p^{k}

$$
\Leftrightarrow \quad k / r
$$

Pf If 1 a field $k o f$ sire $p^{r}-9$
of then $\exists \alpha \in K, \alpha^{q}-\alpha=0$
c) If such a k exists, $\left|k^{x}\right|=9-1$.
so given ac k,
Lagrongers the \Rightarrow order of α
=smallest int n st. $\alpha^{n}=1$
has to divide $q-1$

$$
\begin{aligned}
& \Rightarrow q-1=m n, \quad m \in t \\
& \text { so } \alpha^{q-1}=\alpha^{m n}=\left(\alpha^{n}\right)^{m}=1 \\
& \Rightarrow \alpha^{q-1}-1=0 \underset{b y}{m} \alpha+p l^{m} y
\end{aligned}
$$

Why does k exist??
Idea: If k exists, by (c), we know its elements are roots of $x^{8}-x$. By all of our work on abstract field extensions, \exists a field extension ${ }^{\circ}$ of $\mathbb{Z} / \rho \mathbb{Z}$ in which $x^{q}-x$ splits completely. So all of the roots of $X^{4}-X$ live in L.
15.7.11 Lemma: These roots (there are f of them) form a subfield of L.

$$
\frac{11}{k}
$$

