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Preliminary Definitions

Definition 1: Complex Representation

A complex representation of a group G is a homomorphism ρ : G →
GL(n,C) from G to n×n invertible matrices over C. A representation
is irreducible if it has no proper, nontrivial subrepresentation.

Definition 2: Character

The character of a complex representation ρ is the map χρ : g 7→
Tr(ρ(g)) where Tr(ρ(g)) is the trace of the matrix ρ(g). We let
Irr(G ) denote the set of irreducible characters of G .

Definition 3: Codegree

The codegree of a character χ of a group G is defined as cod(χ) :=
|G :ker(χ)|

χ(1) , where ker(χ) := ker(ρ).
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Problem

Definition 4: Codegree Set

The codegree set of a group G is defined as cod(G ) := {cod(χ)|χ ∈
Irr(G )}.

Conjecture (Kourovka Notebook Problem 20.79)

If H is a finite nonabelian simple group and G is a finite group with
cod(G ) = cod(H), then G ∼= H.

Recently, various authors have proved this conjecture for various simple
groups such as PSL(2, q), 2B2(2

2f+1),PSL(3, 4), and all the sporadic
groups. In this project, we verify this conjecture for H any alternating
group An for n ≥ 5.
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Proof Outline

Suppose for contradiction that G is a minimal counterexample to the
conjecture. That is, cod(G ) = cod(An), but G ̸∼= An.

Let N be a maximal normal subgroup of G . Then G/N is simple, and
cod(G/N) ⊆ cod(G ) = cod(An).

We first show that G/N ∼= An.

Then, we show that N = 1, so G ∼= G/N ∼= An.
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Proving G/N ∼= An

We show that if G/N ̸∼= An, we get a contradiction by proving
cod(G/N) ̸⊆ cod(An) for all other nonabelian simple groups G/N.

Lemma 5: Dividing Orders

Let H be a finite group and K be a finite simple group with cod(K ) ⊆
cod(H), then |K | divides |H|.

Lemma 6: Order Bound

Let H be a finite simple group and K be a finite group with cod(K ) ⊆
cod(H). Then, |H| < |K | · |Irr(K )|

Proof. ∀χ ∈ Irr(H), χ(1)2 < |H|. H is simple so ker(χ) = 1 and

cod(χ) = |H|
χ(1) >

√
|H|. Then, cod(K ) ⊆ cod(H) implies that

∀ψ ∈ Irr(K ), |K |
ψ(1) > cod(ψ) >

√
|H|. Thus, ψ(1) < |K |√

|H|
. Summing the squares

of irreducible character degrees gives |K | < |Irr(K )| |K |2
|H| and the inequality follows.
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G/N is Sporadic

Corollary 7: Order Restrictions

If cod(G/N) ⊆ cod(An), then
|An|
|G/N| ∈ {1, 2, . . . , |Irr(G/N)|}.

For each sporadic (or Tits) group, G/N, we obtain an upper bound
on n by using |An| < |G/N| · |Irr(G/N)|.

Then we can computationally check which values of n satisfy |G/N|
divides |An|.

The only possibility is An = A10 and G/N ∼= J2,

In this case, we can check using the ATLAS that cod(J2) ̸⊆ cod(A10).

Thus if cod(G/N) ⊆ cod(An), G/N cannot be a sporadic group or the
Tits group.

Dolorfino, Martin, Slonim, Sun, Yang Codegrees of Alternating Groups October 8, 2022 6 / 15



G/N is Sporadic

Corollary 7: Order Restrictions

If cod(G/N) ⊆ cod(An), then
|An|
|G/N| ∈ {1, 2, . . . , |Irr(G/N)|}.

For each sporadic (or Tits) group, G/N, we obtain an upper bound
on n by using |An| < |G/N| · |Irr(G/N)|.

Then we can computationally check which values of n satisfy |G/N|
divides |An|.

The only possibility is An = A10 and G/N ∼= J2,

In this case, we can check using the ATLAS that cod(J2) ̸⊆ cod(A10).

Thus if cod(G/N) ⊆ cod(An), G/N cannot be a sporadic group or the
Tits group.

Dolorfino, Martin, Slonim, Sun, Yang Codegrees of Alternating Groups October 8, 2022 6 / 15



G/N is Sporadic

Corollary 7: Order Restrictions

If cod(G/N) ⊆ cod(An), then
|An|
|G/N| ∈ {1, 2, . . . , |Irr(G/N)|}.

For each sporadic (or Tits) group, G/N, we obtain an upper bound
on n by using |An| < |G/N| · |Irr(G/N)|.

Then we can computationally check which values of n satisfy |G/N|
divides |An|.

The only possibility is An = A10 and G/N ∼= J2,

In this case, we can check using the ATLAS that cod(J2) ̸⊆ cod(A10).

Thus if cod(G/N) ⊆ cod(An), G/N cannot be a sporadic group or the
Tits group.

Dolorfino, Martin, Slonim, Sun, Yang Codegrees of Alternating Groups October 8, 2022 6 / 15



G/N is Sporadic

Corollary 7: Order Restrictions

If cod(G/N) ⊆ cod(An), then
|An|
|G/N| ∈ {1, 2, . . . , |Irr(G/N)|}.

For each sporadic (or Tits) group, G/N, we obtain an upper bound
on n by using |An| < |G/N| · |Irr(G/N)|.

Then we can computationally check which values of n satisfy |G/N|
divides |An|.

The only possibility is An = A10 and G/N ∼= J2,

In this case, we can check using the ATLAS that cod(J2) ̸⊆ cod(A10).

Thus if cod(G/N) ⊆ cod(An), G/N cannot be a sporadic group or the
Tits group.

Dolorfino, Martin, Slonim, Sun, Yang Codegrees of Alternating Groups October 8, 2022 6 / 15



G/N is a Simple Group of Lie Type

Example 8: PSL(m + 1, q)

Let G/N = PSL(m+1, q), where m is a positive integer and q = pk

is a prime power. Then, |G/N| = qm(m+1)/2

gcd(m+1,q−1)

∏m
i=1(q

i+1 − 1) and

|Irr(G/N)| ≤ 2.5qm.

Proof. We know qm(m+1)/2 divides |G/N| and that |An|q ≤ n
k(p−1) . Since

|G/N| divides |An|, we have m(m+1)
2 ≤ n

k(p−1) . Thus, n ≥ m(m+1)k(p−1)
2 .

Using the Lemma which limits |An| and the above inequality, we have
|Am(m+1)k(p−1)

2

| < |G/N| · 2.5qm. As functions of m, p, or k only, the

left-hand side grows faster asymptotically than the right so we find
maximum values for each of these variables for which the inequality is
satisfied. Namely, m ≤ 6, p ≤ 17, and k ≤ 63. Now, we can anaylze each
of these possible combinations in turn in the same way we did for the
sporadic groups.
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G/N is a Simple Group of Lie Type, Part 2

Possible Exceptions

We get the following list of possible exceptions which satisfy
|PSL(m + 1, q)| divides |An| and |An| < |PSL(m + 1, q)| · 2.5qm:

m q n

1 4 5
1 4 6
1 8 7
1 9 6
1 9 7
1 5 5
1 5 6
1 7 7
2 4 8
2 4 9
3 2 8
3 2 9

Remark. PSL(2, 4) ∼= PSL(2, 5) ∼= A5,
PSL(2, 9) ∼= A6, and PSL(4, 2) ∼= A8.

In all other cases, when PSL(m + 1, q) ̸∼= An, we
can check using the ATLAS that
cod(PSL(m + 1, q)) ̸⊆ cod(An).
We follow these same steps to show that for G/N
any simple group of Lie type,
cod(G/N) ̸⊆ cod(An).
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G/N is an Alternating Group

If G/N ∼= Am ̸∼= An, then we know m < n, since |Am| divides |An|.

Let ax denote the the minimal nontrivial codegree of Ax . We will show
that am < an, proving that if cod(Am) ⊆ cod(An), then m = n.

We know that the irreducible representations of Sn are in a one-to-one
correspondence with the partitions of n.

Let λ = (λ1 ≥ λ2 ≥ . . . ≥ λk) be a partition of n and Vλ be the
corresponding irreducible representation of Sn.
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G/N is an Alternating Group

Interpreting λ as a Young diagram with k rows of length λ1 . . . λk , we
have that

cod(Vλ) =
n!

dim(Vλ)
=

∏
hλ(i , j) := Hλ,

where the product goes over all the cells of the Young diagram, and
hλ(i , j) is the hook length of the cell (i , j), i.e. the number of cells (a, b)
such that a = i and b ≥ j or a ≥ i and b = j .

Let Uλ be the restriction of Vλ to An. If λ is not self-conjugate, then Uλ

remains irreducible, and, for our purposes, we can prove that we only need
to consider λ which are not self-conjugate.
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G/N is an Alternating Group

Thus an = Hλ/2 for some λ. Then for m > 2, we may choose a
non-self-conjugate partition of m, µ, such that µ is completely contained
λ. Then

am ≤ Hµ

2
<

Hλ

2
= an

However, am ∈ cod(Am) ⊆ cod(An) while an is the smallest nontrivial
element of cod(An) and hence we get a contradiction. Thus if G/N is an
alternating group and cod(G/N) ⊆ cod(An), then G/N ∼= An.

Thus, we have shown in the previous slides that cod(G/N) ̸⊆ cod(An) for
any simple group G/N except G/N ∼= An. Thus G/N ∼= An.
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Proving N = 1

Let G be a minimal counterexample where cod(G ) = cod(An) but
G ̸∼= An. Let N be a maximal normal subgroup of G . Then, G/N ∼= An.
We prove the following relatively simple properties:

N is also a minimal normal subgroup

N is the unique minimal normal subgroup of G which implies it is the
only proper, nontrivial normal subgroup of G

Every character χ ∈ Irr(G | N) := Irr(G )− Irr(G/N) is faithful

N is an elementary abelian group

CG (N) = N (Schur multiplier of An)

|IG (λ)|
θ(1) ∈ cod(G ) and |N| divides |G/N|
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Every character χ ∈ Irr(G | N) := Irr(G )− Irr(G/N) is faithful

N is an elementary abelian group

CG (N) = N (Schur multiplier of An)

|IG (λ)|
θ(1) ∈ cod(G ) and |N| divides |G/N|
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Proving N = 1, Part 2

Summary

|N| = pm divides |G/N| = |An|. By the normalizer-centralizer theorem,
An

∼= G/N = NG (N)/CG (N) ≤ Aut(N) and m > 1. In general,
Aut(N) = GL(m, p), so An ≲ GL(m, p).

The p-part of n! gives |An|p ≤ n
p−1 for any prime p. I.E. m ≤ n

p−1

For n > 7, the minimal faithful representation of An over a finite field
has degree at least n − 2. I.E. m ≥ n − 2

Thus, we deduce from these inequalities that p = 2 and m = n − 2
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Proving N = 1, Part 3

|N|2 = |An|2 = m − 2

Let λ ∈ Irr(N), ϑ ∈ Irr(IG (λ)|λ), and T := IG (λ)

1 < |G : T | < |N| = 2n−2 for |G : T | is the number of all conjugates
of λ

|T |
ϑ(1) ∈ cod(G ) and |N| divides |T |

ϑ(1)∣∣∣ |T/N|
ϑ(1)

∣∣∣
2
= 0 so the 2-parts of |T/N| and ϑ(1) are equal

|T/N| is a sum of squares of the form ϑ(1) so the 2-parts of each
must be 1

Thus, since |G/N|2 ≥ |N|2 = n − 2, we have
|G : T |2 = |G/N : T/N|2 ≥ n − 2 and so |G : T | ≥ 2n−2 = |N|,
which is a contradiction.
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