Characterizing Alternating Groups by Their Codegree

Sets

Mallory Dolorfino, Luke Martin, Zachary Slonim, Yuxuan Sun, Yong Yang

Kalamazoo College, Gonzaga University, University of California Berkeley, Haverford College, Texas State University

October 8, 2022

Preliminary Definitions

Definition 1: Complex Representation

A complex representation of a group G is a homomorphism $\rho: G \rightarrow$ $\mathrm{GL}(n, \mathbb{C})$ from G to $n \times n$ invertible matrices over \mathbb{C}. A representation is irreducible if it has no proper, nontrivial subrepresentation.

Preliminary Definitions

Definition 1: Complex Representation

A complex representation of a group G is a homomorphism $\rho: G \rightarrow$ GL (n, \mathbb{C}) from G to $n \times n$ invertible matrices over \mathbb{C}. A representation is irreducible if it has no proper, nontrivial subrepresentation.

Definition 2: Character

The character of a complex representation ρ is the map $\chi_{\rho}: g \mapsto$ $\operatorname{Tr}(\rho(g))$ where $\operatorname{Tr}(\rho(g))$ is the trace of the matrix $\rho(g)$. We let $\operatorname{Irr}(G)$ denote the set of irreducible characters of G.

Preliminary Definitions

Definition 1: Complex Representation

A complex representation of a group G is a homomorphism $\rho: G \rightarrow$ GL (n, \mathbb{C}) from G to $n \times n$ invertible matrices over \mathbb{C}. A representation is irreducible if it has no proper, nontrivial subrepresentation.

Definition 2: Character

The character of a complex representation ρ is the map $\chi_{\rho}: g \mapsto$ $\operatorname{Tr}(\rho(g))$ where $\operatorname{Tr}(\rho(g))$ is the trace of the matrix $\rho(g)$. We let $\operatorname{Irr}(G)$ denote the set of irreducible characters of G.

Definition 3: Codegree

The codegree of a character χ of a group G is defined as $\operatorname{cod}(\chi):=$ $\frac{|G: \operatorname{ker}(\chi)|}{\chi(1)}$, where $\operatorname{ker}(\chi):=\operatorname{ker}(\rho)$.

Definition 4: Codegree Set

The codegree set of a group G is defined as $\operatorname{cod}(G):=\{\operatorname{cod}(\chi) \mid \chi \in$ $\operatorname{Irr}(G)\}$.

Problem

Definition 4: Codegree Set

The codegree set of a group G is defined as $\operatorname{cod}(G):=\{\operatorname{cod}(\chi) \mid \chi \in$ $\operatorname{Irr}(G)\}$.

Conjecture (Kourovka Notebook Problem 20.79)

If H is a finite nonabelian simple group and G is a finite group with $\operatorname{cod}(G)=\operatorname{cod}(H)$, then $G \cong H$.

Problem

Definition 4: Codegree Set

The codegree set of a group G is defined as $\operatorname{cod}(G):=\{\operatorname{cod}(\chi) \mid \chi \in$ $\operatorname{Irr}(G)\}$.

Conjecture (Kourovka Notebook Problem 20.79)

If H is a finite nonabelian simple group and G is a finite group with $\operatorname{cod}(G)=\operatorname{cod}(H)$, then $G \cong H$.

Recently, various authors have proved this conjecture for various simple groups such as $\operatorname{PSL}(2, q),{ }^{2} B_{2}\left(2^{2 f+1}\right), \operatorname{PSL}(3,4)$, and all the sporadic groups. In this project, we verify this conjecture for H any alternating group A_{n} for $n \geq 5$.

Proof Outline

- Suppose for contradiction that G is a minimal counterexample to the conjecture. That is, $\operatorname{cod}(G)=\operatorname{cod}\left(\mathrm{A}_{n}\right)$, but $G \not \approx \mathrm{~A}_{n}$.

Proof Outline

- Suppose for contradiction that G is a minimal counterexample to the conjecture. That is, $\operatorname{cod}(G)=\operatorname{cod}\left(\mathrm{A}_{n}\right)$, but $G \not \approx \mathrm{~A}_{n}$.
- Let N be a maximal normal subgroup of G. Then G / N is simple, and $\operatorname{cod}(G / N) \subseteq \operatorname{cod}(G)=\operatorname{cod}\left(\mathrm{A}_{n}\right)$.

Proof Outline

- Suppose for contradiction that G is a minimal counterexample to the conjecture. That is, $\operatorname{cod}(G)=\operatorname{cod}\left(\mathrm{A}_{n}\right)$, but $G \not \approx \mathrm{~A}_{n}$.
- Let N be a maximal normal subgroup of G. Then G / N is simple, and $\operatorname{cod}(G / N) \subseteq \operatorname{cod}(G)=\operatorname{cod}\left(\mathrm{A}_{n}\right)$.
- We first show that $G / N \cong \mathrm{~A}_{n}$.

Proof Outline

- Suppose for contradiction that G is a minimal counterexample to the conjecture. That is, $\operatorname{cod}(G)=\operatorname{cod}\left(\mathrm{A}_{n}\right)$, but $G \not \approx \mathrm{~A}_{n}$.
- Let N be a maximal normal subgroup of G. Then G / N is simple, and $\operatorname{cod}(G / N) \subseteq \operatorname{cod}(G)=\operatorname{cod}\left(\mathrm{A}_{n}\right)$.
- We first show that $G / N \cong \mathrm{~A}_{n}$.
- Then, we show that $N=1$, so $G \cong G / N \cong \mathrm{~A}_{n}$.

Proving $G / N \cong \mathrm{~A}_{n}$

We show that if $G / N \nsupseteq \mathrm{~A}_{n}$, we get a contradiction by proving $\operatorname{cod}(G / N) \nsubseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$ for all other nonabelian simple groups G / N.

Proving $G / N \cong \mathrm{~A}_{n}$

We show that if $G / N \nsupseteq \mathrm{~A}_{n}$, we get a contradiction by proving $\operatorname{cod}(G / N) \nsubseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$ for all other nonabelian simple groups G / N.

Lemma 5: Dividing Orders

Let H be a finite group and K be a finite simple group with $\operatorname{cod}(K) \subseteq$ $\operatorname{cod}(H)$, then $|K|$ divides $|H|$.

Proving $G / N \cong \mathrm{~A}_{n}$

We show that if $G / N \neq \mathrm{A}_{n}$, we get a contradiction by proving $\operatorname{cod}(G / N) \nsubseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$ for all other nonabelian simple groups G / N.

Lemma 5: Dividing Orders

Let H be a finite group and K be a finite simple group with $\operatorname{cod}(K) \subseteq$ $\operatorname{cod}(H)$, then $|K|$ divides $|H|$.

Lemma 6: Order Bound

Let H be a finite simple group and K be a finite group with $\operatorname{cod}(K) \subseteq$ $\operatorname{cod}(H)$. Then, $|H|<|K| \cdot|\operatorname{Irr}(K)|$

Proving $G / N \cong \mathrm{~A}_{n}$

We show that if $G / N \nsubseteq \mathrm{~A}_{n}$, we get a contradiction by proving $\operatorname{cod}(G / N) \nsubseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$ for all other nonabelian simple groups G / N.

Lemma 5: Dividing Orders

Let H be a finite group and K be a finite simple group with $\operatorname{cod}(K) \subseteq$ $\operatorname{cod}(H)$, then $|K|$ divides $|H|$.

Lemma 6: Order Bound

Let H be a finite simple group and K be a finite group with $\operatorname{cod}(K) \subseteq$ $\operatorname{cod}(H)$. Then, $|H|<|K| \cdot|\operatorname{Irr}(K)|$

Proof. $\forall \chi \in \operatorname{Irr}(H), \chi(1)^{2}<|H|$. H is simple so $\operatorname{ker}(\chi)=1$ and $\operatorname{cod}(\chi)=\frac{|H|}{\chi(1)}>\sqrt{|H|}$. Then, $\operatorname{cod}(K) \subseteq \operatorname{cod}(H)$ implies that $\forall \psi \in \operatorname{Irr}(K), \frac{|K|}{\psi(1)}>\operatorname{cod}(\psi)>\sqrt{|H|}$. Thus, $\psi(1)<\frac{|K|}{\sqrt{|H|}}$. Summing the squares of irreducible character degrees gives $|K|<|\operatorname{Irr}(K)| \frac{|K|^{2}}{|H|}$ and the inequality follows.

G / N is Sporadic

Corollary 7: Order Restrictions

If $\operatorname{cod}(G / N) \subseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$, then $\frac{\left|\mathrm{A}_{n}\right|}{|G / N|} \in\{1,2, \ldots,|\operatorname{Irr}(G / N)|\}$.

G / N is Sporadic

Corollary 7: Order Restrictions

If $\operatorname{cod}(G / N) \subseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$, then $\frac{\left|\mathrm{A}_{n}\right|}{|G / N|} \in\{1,2, \ldots,|\operatorname{Irr}(G / N)|\}$.

- For each sporadic (or Tits) group, G / N, we obtain an upper bound on n by using $\left|A_{n}\right|<|G / N| \cdot|\operatorname{Irr}(G / N)|$.
- Then we can computationally check which values of n satisfy $|G / N|$ divides $\left|\mathrm{A}_{n}\right|$.

G / N is Sporadic

Corollary 7: Order Restrictions

If $\operatorname{cod}(G / N) \subseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$, then $\frac{\left|\mathrm{A}_{n}\right|}{|G / N|} \in\{1,2, \ldots,|\operatorname{Irr}(G / N)|\}$.

- For each sporadic (or Tits) group, G / N, we obtain an upper bound on n by using $\left|A_{n}\right|<|G / N| \cdot|\operatorname{Irr}(G / N)|$.
- Then we can computationally check which values of n satisfy $|G / N|$ divides $\left|\mathrm{A}_{n}\right|$.
- The only possibility is $\mathrm{A}_{n}=\mathrm{A}_{10}$ and $G / N \cong \mathrm{~J}_{2}$,
- In this case, we can check using the ATLAS that $\operatorname{cod}\left(J_{2}\right) \nsubseteq \operatorname{cod}\left(\mathrm{A}_{10}\right)$.

G / N is Sporadic

Corollary 7: Order Restrictions

$$
\text { If } \operatorname{cod}(G / N) \subseteq \operatorname{cod}\left(\mathrm{A}_{n}\right) \text {, then } \frac{\left|\mathrm{A}_{n}\right|}{|G / N|} \in\{1,2, \ldots,|\operatorname{Irr}(G / N)|\}
$$

- For each sporadic (or Tits) group, G / N, we obtain an upper bound on n by using $\left|A_{n}\right|<|G / N| \cdot|\operatorname{Irr}(G / N)|$.
- Then we can computationally check which values of n satisfy $|G / N|$ divides $\left|\mathrm{A}_{n}\right|$.
- The only possibility is $\mathrm{A}_{n}=\mathrm{A}_{10}$ and $G / N \cong \mathrm{~J}_{2}$,
- In this case, we can check using the ATLAS that $\operatorname{cod}\left(J_{2}\right) \nsubseteq \operatorname{cod}\left(\mathrm{A}_{10}\right)$.

Thus if $\operatorname{cod}(G / N) \subseteq \operatorname{cod}\left(A_{n}\right), G / N$ cannot be a sporadic group or the Tits group.

G / N is a Simple Group of Lie Type

Example 8: $\operatorname{PSL}(m+1, q)$

Let $G / N=\operatorname{PSL}(m+1, q)$, where m is a positive integer and $q=p^{k}$ is a prime power. Then, $|G / N|=\frac{q^{m(m+1) / 2}}{\operatorname{gcd}(m+1, q-1)} \prod_{i=1}^{m}\left(q^{i+1}-1\right)$ and $|\operatorname{Irr}(G / N)| \leq 2.5 q^{m}$.

G / N is a Simple Group of Lie Type

Example 8: $\operatorname{PSL}(m+1, q)$

Let $G / N=\operatorname{PSL}(m+1, q)$, where m is a positive integer and $q=p^{k}$ is a prime power. Then, $|G / N|=\frac{q^{m(m+1) / 2}}{\operatorname{gcd}(m+1, q-1)} \prod_{i=1}^{m}\left(q^{i+1}-1\right)$ and $|\operatorname{Irr}(G / N)| \leq 2.5 q^{m}$.

Proof. We know $q^{m(m+1) / 2}$ divides $|G / N|$ and that $\left|\mathrm{A}_{n}\right|_{q} \leq \frac{n}{k(p-1)}$. Since $|G / N|$ divides $\left|A_{n}\right|$, we have $\frac{m(m+1)}{2} \leq \frac{n}{k(p-1)}$. Thus, $n \geq \frac{m(m+1) k(p-1)}{2}$.
Using the Lemma which limits $\left|A_{n}\right|$ and the above inequality, we have $\left|\mathrm{A}_{\frac{m(m+1) k(p-1)}{2}}\right|<|G / N| \cdot 2.5 q^{m}$. As functions of m, p, or k only, the left-hand side grows faster asymptotically than the right so we find maximum values for each of these variables for which the inequality is satisfied. Namely, $m \leq 6, p \leq 17$, and $k \leq 63$. Now, we can anaylze each of these possible combinations in turn in the same way we did for the sporadic groups.

G / N is a Simple Group of Lie Type, Part 2

Possible Exceptions

We get the following list of possible exceptions which satisfy $|\operatorname{PSL}(m+1, q)|$ divides $\left|\mathrm{A}_{n}\right|$ and $\left|\mathrm{A}_{n}\right|<|\operatorname{PSL}(m+1, q)| \cdot 2.5 q^{m}$:

m	q	n
1	4	5
1	4	6
1	8	7
1	9	6
1	9	7
1	5	5
1	5	6
1	7	7
2	4	8
2	4	9
3	2	8
3	2	9

Remark. $\operatorname{PSL}(2,4) \cong \operatorname{PSL}(2,5) \cong A_{5}$, $\operatorname{PSL}(2,9) \cong \mathrm{A}_{6}$, and $\operatorname{PSL}(4,2) \cong \mathrm{A}_{8}$.

- In all other cases, when $\operatorname{PSL}(m+1, q) \not \approx \mathrm{A}_{n}$, we can check using the ATLAS that $\operatorname{cod}(\operatorname{PSL}(m+1, q)) \nsubseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$.
- We follow these same steps to show that for G / N any simple group of Lie type, $\operatorname{cod}(G / N) \nsubseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$.

G / N is an Alternating Group

If $G / N \cong \mathrm{~A}_{m} \nsubseteq \mathrm{~A}_{n}$, then we know $m<n$, since $\left|\mathrm{A}_{m}\right|$ divides $\left|\mathrm{A}_{n}\right|$.

G / N is an Alternating Group

If $G / N \cong \mathrm{~A}_{m} \nsubseteq \mathrm{~A}_{n}$, then we know $m<n$, since $\left|\mathrm{A}_{m}\right|$ divides $\left|\mathrm{A}_{n}\right|$.
Let a_{x} denote the the minimal nontrivial codegree of A_{x}. We will show that $a_{m}<a_{n}$, proving that if $\operatorname{cod}\left(\mathrm{A}_{m}\right) \subseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$, then $m=n$.

G / N is an Alternating Group

If $G / N \cong \mathrm{~A}_{m} \nsubseteq \mathrm{~A}_{n}$, then we know $m<n$, since $\left|\mathrm{A}_{m}\right|$ divides $\left|\mathrm{A}_{n}\right|$.
Let a_{x} denote the the minimal nontrivial codegree of A_{x}. We will show that $a_{m}<a_{n}$, proving that if $\operatorname{cod}\left(\mathrm{A}_{m}\right) \subseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$, then $m=n$.

We know that the irreducible representations of S_{n} are in a one-to-one correspondence with the partitions of n.

G / N is an Alternating Group

If $G / N \cong \mathrm{~A}_{m} \nsubseteq \mathrm{~A}_{n}$, then we know $m<n$, since $\left|\mathrm{A}_{m}\right|$ divides $\left|\mathrm{A}_{n}\right|$.
Let a_{x} denote the the minimal nontrivial codegree of A_{x}. We will show that $a_{m}<a_{n}$, proving that if $\operatorname{cod}\left(\mathrm{A}_{m}\right) \subseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$, then $m=n$.

We know that the irreducible representations of S_{n} are in a one-to-one correspondence with the partitions of n.

Let $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}\right)$ be a partition of n and V_{λ} be the corresponding irreducible representation of S_{n}.

G / N is an Alternating Group

Interpreting λ as a Young diagram with k rows of length $\lambda_{1} \ldots \lambda_{k}$, we have that

$$
\operatorname{cod}\left(V_{\lambda}\right)=\frac{n!}{\operatorname{dim}\left(V_{\lambda}\right)}=\prod h_{\lambda}(i, j):=H_{\lambda},
$$

where the product goes over all the cells of the Young diagram, and $h_{\lambda}(i, j)$ is the hook length of the cell (i, j), i.e. the number of cells (a, b) such that $a=i$ and $b \geq j$ or $a \geq i$ and $b=j$.

G / N is an Alternating Group

Interpreting λ as a Young diagram with k rows of length $\lambda_{1} \ldots \lambda_{k}$, we have that

$$
\operatorname{cod}\left(V_{\lambda}\right)=\frac{n!}{\operatorname{dim}\left(V_{\lambda}\right)}=\prod h_{\lambda}(i, j):=H_{\lambda},
$$

where the product goes over all the cells of the Young diagram, and $h_{\lambda}(i, j)$ is the hook length of the cell (i, j), i.e. the number of cells (a, b) such that $a=i$ and $b \geq j$ or $a \geq i$ and $b=j$.

Let U_{λ} be the restriction of V_{λ} to A_{n}. If λ is not self-conjugate, then U_{λ} remains irreducible, and, for our purposes, we can prove that we only need to consider λ which are not self-conjugate.

G / N is an Alternating Group

Thus $a_{n}=H_{\lambda} / 2$ for some λ. Then for $m>2$, we may choose a non-self-conjugate partition of m, μ, such that μ is completely contained λ. Then

$$
a_{m} \leq \frac{H_{\mu}}{2}<\frac{H_{\lambda}}{2}=a_{n}
$$

G / N is an Alternating Group

Thus $a_{n}=H_{\lambda} / 2$ for some λ. Then for $m>2$, we may choose a non-self-conjugate partition of m, μ, such that μ is completely contained λ. Then

$$
a_{m} \leq \frac{H_{\mu}}{2}<\frac{H_{\lambda}}{2}=a_{n}
$$

However, $a_{m} \in \operatorname{cod}\left(\mathrm{~A}_{m}\right) \subseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$ while a_{n} is the smallest nontrivial element of $\operatorname{cod}\left(\mathrm{A}_{n}\right)$ and hence we get a contradiction. Thus if G / N is an alternating group and $\operatorname{cod}(G / N) \subseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$, then $G / N \cong \mathrm{~A}_{n}$.

G / N is an Alternating Group

Thus $a_{n}=H_{\lambda} / 2$ for some λ. Then for $m>2$, we may choose a non-self-conjugate partition of m, μ, such that μ is completely contained λ. Then

$$
a_{m} \leq \frac{H_{\mu}}{2}<\frac{H_{\lambda}}{2}=a_{n}
$$

However, $a_{m} \in \operatorname{cod}\left(\mathrm{~A}_{m}\right) \subseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$ while a_{n} is the smallest nontrivial element of $\operatorname{cod}\left(\mathrm{A}_{n}\right)$ and hence we get a contradiction. Thus if G / N is an alternating group and $\operatorname{cod}(G / N) \subseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$, then $G / N \cong \mathrm{~A}_{n}$.

Thus, we have shown in the previous slides that $\operatorname{cod}(G / N) \nsubseteq \operatorname{cod}\left(\mathrm{A}_{n}\right)$ for any simple group G / N except $G / N \cong A_{n}$. Thus $G / N \cong A_{n}$.

Proving $N=1$

Let G be a minimal counterexample where $\operatorname{cod}(G)=\operatorname{cod}\left(A_{n}\right)$ but $G \not \approx \mathrm{~A}_{n}$. Let N be a maximal normal subgroup of G. Then, $G / N \cong \mathrm{~A}_{n}$. We prove the following relatively simple properties:

Proving $N=1$

Let G be a minimal counterexample where $\operatorname{cod}(G)=\operatorname{cod}\left(A_{n}\right)$ but $G \not \approx \mathrm{~A}_{n}$. Let N be a maximal normal subgroup of G. Then, $G / N \cong \mathrm{~A}_{n}$. We prove the following relatively simple properties:

- N is also a minimal normal subgroup
- N is the unique minimal normal subgroup of G which implies it is the only proper, nontrivial normal subgroup of G
- Every character $\chi \in \operatorname{Irr}(G \mid N):=\operatorname{Irr}(G)-\operatorname{Irr}(G / N)$ is faithful

Proving $N=1$

Let G be a minimal counterexample where $\operatorname{cod}(G)=\operatorname{cod}\left(A_{n}\right)$ but $G \not \approx \mathrm{~A}_{n}$. Let N be a maximal normal subgroup of G. Then, $G / N \cong \mathrm{~A}_{n}$. We prove the following relatively simple properties:

- N is also a minimal normal subgroup
- N is the unique minimal normal subgroup of G which implies it is the only proper, nontrivial normal subgroup of G
- Every character $\chi \in \operatorname{Irr}(G \mid N):=\operatorname{Irr}(G)-\operatorname{Irr}(G / N)$ is faithful
- N is an elementary abelian group
- $\mathbf{C}_{G}(N)=N$ (Schur multiplier of $\left.\mathrm{A}_{n}\right)$

Proving $N=1$

Let G be a minimal counterexample where $\operatorname{cod}(G)=\operatorname{cod}\left(A_{n}\right)$ but $G \not \approx \mathrm{~A}_{n}$. Let N be a maximal normal subgroup of G. Then, $G / N \cong \mathrm{~A}_{n}$. We prove the following relatively simple properties:

- N is also a minimal normal subgroup
- N is the unique minimal normal subgroup of G which implies it is the only proper, nontrivial normal subgroup of G
- Every character $\chi \in \operatorname{Irr}(G \mid N):=\operatorname{Irr}(G)-\operatorname{Irr}(G / N)$ is faithful
- N is an elementary abelian group
- $\mathbf{C}_{G}(N)=N$ (Schur multiplier of A_{n})
- $\frac{\left|I_{G}(\lambda)\right|}{\theta(1)} \in \operatorname{cod}(G)$ and $|N|$ divides $|G / N|$

Proving $N=1$, Part 2

$$
\begin{aligned}
& \text { Summary } \\
& |N|=p^{m} \text { divides }|G / N|=\left|\mathrm{A}_{n}\right| \text {. By the normalizer-centralizer theorem, } \\
& \mathrm{A}_{n} \cong G / N=\mathbf{N}_{G}(N) / \mathbf{C}_{G}(N) \leq \operatorname{Aut}(N) \text { and } m>1 \text {. In general, } \\
& \operatorname{Aut}(N)=\operatorname{GL}(m, p) \text {, so } \mathrm{A}_{n} \lesssim \operatorname{GL}(m, p) \text {. }
\end{aligned}
$$

Proving $N=1$, Part 2

Summary
 $|N|=p^{m}$ divides $|G / N|=\left|\mathrm{A}_{n}\right|$. By the normalizer-centralizer theorem, $\mathrm{A}_{n} \cong G / N=\mathbf{N}_{G}(N) / \mathbf{C}_{G}(N) \leq \operatorname{Aut}(N)$ and $m>1$. In general, $\operatorname{Aut}(N)=\operatorname{GL}(m, p)$, so $\mathrm{A}_{n} \lesssim \mathrm{GL}(m, p)$.

- The p-part of n ! gives $\left|\mathrm{A}_{n}\right|_{p} \leq \frac{n}{p-1}$ for any prime p. I.E. $m \leq \frac{n}{p-1}$

Proving $N=1$, Part 2

Summary

$|N|=p^{m}$ divides $|G / N|=\left|\mathrm{A}_{n}\right|$. By the normalizer-centralizer theorem, $\mathrm{A}_{n} \cong G / N=\mathbf{N}_{G}(N) / \mathbf{C}_{G}(N) \leq \operatorname{Aut}(N)$ and $m>1$. In general, $\operatorname{Aut}(N)=\operatorname{GL}(m, p)$, so $\mathrm{A}_{n} \lesssim \mathrm{GL}(m, p)$.

- The p-part of n ! gives $\left|\mathrm{A}_{n}\right|_{p} \leq \frac{n}{p-1}$ for any prime p. I.E. $m \leq \frac{n}{p-1}$
- For $n>7$, the minimal faithful representation of A_{n} over a finite field has degree at least $n-2$. I.E. $m \geq n-2$

Proving $N=1$, Part 2

Summary

$|N|=p^{m}$ divides $|G / N|=\left|\mathrm{A}_{n}\right|$. By the normalizer-centralizer theorem, $\mathrm{A}_{n} \cong G / N=\mathbf{N}_{G}(N) / \mathbf{C}_{G}(N) \leq \operatorname{Aut}(N)$ and $m>1$. In general, $\operatorname{Aut}(N)=\operatorname{GL}(m, p)$, so $\mathrm{A}_{n} \lesssim \mathrm{GL}(m, p)$.

- The p-part of n ! gives $\left|\mathrm{A}_{n}\right|_{p} \leq \frac{n}{p-1}$ for any prime p. I.E. $m \leq \frac{n}{p-1}$
- For $n>7$, the minimal faithful representation of A_{n} over a finite field has degree at least $n-2$. I.E. $m \geq n-2$
- Thus, we deduce from these inequalities that $p=2$ and $m=n-2$

Proving $N=1$, Part 3

- $|N|_{2}=\left|\mathrm{A}_{n}\right|_{2}=m-2$

Proving $N=1$, Part 3

- $|N|_{2}=\left|\mathrm{A}_{n}\right|_{2}=m-2$
- Let $\lambda \in \operatorname{Irr}(N), \vartheta \in \operatorname{Irr}\left(I_{G}(\lambda) \mid \lambda\right)$, and $T:=I_{G}(\lambda)$

Proving $N=1$, Part 3

- $|N|_{2}=\left|\mathrm{A}_{n}\right|_{2}=m-2$
- Let $\lambda \in \operatorname{Irr}(N), \vartheta \in \operatorname{Irr}\left(I_{G}(\lambda) \mid \lambda\right)$, and $T:=I_{G}(\lambda)$
- $1<|G: T|<|N|=2^{n-2}$ for $|G: T|$ is the number of all conjugates of λ

Proving $N=1$, Part 3

- $|N|_{2}=\left|\mathrm{A}_{n}\right|_{2}=m-2$
- Let $\lambda \in \operatorname{Irr}(N), \vartheta \in \operatorname{Irr}\left(I_{G}(\lambda) \mid \lambda\right)$, and $T:=I_{G}(\lambda)$
- $1<|G: T|<|N|=2^{n-2}$ for $|G: T|$ is the number of all conjugates of λ
- $\frac{|T|}{\vartheta(1)} \in \operatorname{cod}(G)$ and $|N|$ divides $\frac{|T|}{\vartheta(1)}$

Proving $N=1$, Part 3

- $|N|_{2}=\left|\mathrm{A}_{n}\right|_{2}=m-2$
- Let $\lambda \in \operatorname{Irr}(N), \vartheta \in \operatorname{Irr}\left(I_{G}(\lambda) \mid \lambda\right)$, and $T:=I_{G}(\lambda)$
- $1<|G: T|<|N|=2^{n-2}$ for $|G: T|$ is the number of all conjugates of λ
- $\frac{|T|}{\vartheta(1)} \in \operatorname{cod}(G)$ and $|N|$ divides $\frac{|T|}{\vartheta(1)}$
- $\left|\frac{|T / N|}{\vartheta(1)}\right|_{2}=0$ so the 2-parts of $|T / N|$ and $\vartheta(1)$ are equal

Proving $N=1$, Part 3

- $|N|_{2}=\left|\mathrm{A}_{n}\right|_{2}=m-2$
- Let $\lambda \in \operatorname{Irr}(N), \vartheta \in \operatorname{Irr}\left(I_{G}(\lambda) \mid \lambda\right)$, and $T:=I_{G}(\lambda)$
- $1<|G: T|<|N|=2^{n-2}$ for $|G: T|$ is the number of all conjugates of λ
- $\frac{|T|}{\vartheta(1)} \in \operatorname{cod}(G)$ and $|N|$ divides $\frac{|T|}{\vartheta(1)}$
- $\left|\frac{|T / N|}{\vartheta(1)}\right|_{2}=0$ so the 2-parts of $|T / N|$ and $\vartheta(1)$ are equal
- $|T / N|$ is a sum of squares of the form $\vartheta(1)$ so the 2-parts of each must be 1

Proving $N=1$, Part 3

- $|N|_{2}=\left|\mathrm{A}_{n}\right|_{2}=m-2$
- Let $\lambda \in \operatorname{Irr}(N), \vartheta \in \operatorname{Irr}\left(I_{G}(\lambda) \mid \lambda\right)$, and $T:=I_{G}(\lambda)$
- $1<|G: T|<|N|=2^{n-2}$ for $|G: T|$ is the number of all conjugates of λ
- $\frac{|T|}{\vartheta(1)} \in \operatorname{cod}(G)$ and $|N|$ divides $\frac{|T|}{\vartheta(1)}$
- $\left|\frac{|T / N|}{\vartheta(1)}\right|_{2}=0$ so the 2-parts of $|T / N|$ and $\vartheta(1)$ are equal
- $|T / N|$ is a sum of squares of the form $\vartheta(1)$ so the 2-parts of each must be 1
- Thus, since $|G / N|_{2} \geq|N|_{2}=n-2$, we have $|G: T|_{2}=|G / N: T / N|_{2} \geq n-2$ and so $|G: T| \geq 2^{n-2}=|N|$, which is a contradiction.

Bibliography

[1] A. Bahri, Z. Akhlaghi, and B. Khosravi, An analogue of Huppert's conjecture for character codegrees. Bull. Aust. Math. Soc., 104 (2021), no. 2, 278-286.
[2] R. W. Carter, Simple Groups of Lie Type. Wiley, 1989.
[3] J. H. Conway et. al, Atlas of Finite Groups. Oxford Clarendon Press, 1985.
[4] M. Dolorfino, L. Martin, Z. Slonim, Y. Sun, and Y. Yang, On the characterization of sporadic simple groups by codegrees. Submitted
[5] J. Fulman and R. Guralnick, Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements. Trans. Am. Math. Soc., 364 (2012), no. 6, 3023-3070.
[6] M. Gintz, M. Kortje, M. laurence, Y. Liu, Z. Wang, and Y. Yang, On the characterization of some nonabelian simple groups with few codegrees. Commun. Algebra, 50 (2022), no. 9, 3932-3939.
[7] N. N. Hung, Group pseudo-algebras of finite simple groups. In progress
[8] G. James and A. Kerber, The Representation Theory of the Symmetric Group. Addison-Wesley Publishing Company, 1981.
[9] A. Wagner, The faithful linear representations of least degree of Sn and An over a field of characteristic 2. Math. Z., 151 (1976), 127-138.

